SARVA EDUCATION (SITED) (Running- National I.T & Skill Advancement Training Programme, Since 2008) (India's Best Computer Centre Affiliation Provider)

Course Overview

- **Duration**: 4 Weeks
- Mode: Online / Offline
- Level: Beginner → Lower-Intermediate
- Pre-requisites:
 - Basic computer literacy
 - o Some Python experience helpful but not mandatory
- Tools Used:
 - Python
 - 0 Jupyter Notebook / Google Colab
 - o scikit-learn
 - o Pandas, NumPy
 - Optional: TensorFlow / PyTorch (Intro-level only)

WEEK 1: Introduction to AI & Python for AI

Introduction to AI

- What is Artificial Intelligence?
 - History & Milestones of AI
- Types of AI:
 - Narrow AI
 - General AI
 - o Superintelligence
- Key AI Fields:
 - Machine Learning
 - Deep Learning
 - Computer Vision
 - Natural Language Processing (NLP)
- Real-world Applications of AI

Python Refresher (Part 1)

- Python Basics
- Variables, Data Types
- Conditionals (if/else)
- Loops (for, while)

Python Refresher (Part 2)

- Functions
- Lists, Tuples, Dictionaries
- File I/O
- Understanding Jupyter Notebook / Google Colab

Working with Data in Python

- Introduction to:
 - NumPy
 - Pandas
- Loading and inspecting datasets
- Data cleaning basics
- Handling missing values

Introduction to Machine Learning

- What is Machine Learning?
- Supervised vs. Unsupervised Learning
- Regression vs. Classification
- Machine Learning Workflow

WEEK 2: Supervised Machine Learning

Linear Regression

- Understanding Regression
- Simple Linear Regression
- Visualizing regression line
- Hands-on in Python

Multiple Linear Regression

- Multiple predictors
- Overfitting & Underfitting
- Practical example in Python

Classification with Logistic Regression

- Classification problem
- Logistic Regression fundamentals
- Probability and Sigmoid function
- Binary vs. Multi-class classification
- Hands-on example

Model Evaluation

- Train/Test Split
- Accuracy, Precision, Recall, F1-Score
- Confusion Matrix
- Cross-Validation

Decision Trees

How decision trees work

- Splitting criteria (Gini, Entropy)
- Visualizing decision trees
- Hands-on in scikit-learn

WEEK 3: Unsupervised Learning & Deep Learning Basics

Introduction to Unsupervised Learning

- What is Unsupervised Learning?
- Use cases
- Clustering vs. Dimensionality Reduction

K-Means Clustering

- Understanding K-Means
- Choosing K
- Practical example in Python

Dimensionality Reduction (PCA)

- Concept of dimensionality reduction
- Principal Component Analysis
- Visualizing PCA
- Hands-on example

Introduction to Deep Learning

- What is Deep Learning?
- Artificial Neural Networks vs. Machine Learning
- Neural Network architecture basics
- Use cases of Deep Learning

Building a Simple Neural Network

- Overview of:
 - TensorFlow / Keras OR PyTorch
- Building a simple feedforward network
- Basic activation functions
- Hands-on example

WEEK 4: Special Topics & Mini Project

Natural Language Processing (NLP) Basics

- What is NLP?
- Text preprocessing
- Tokenization

- Bag-of-Words & TF-IDF
- Simple sentiment analysis example

Computer Vision Basics

- What is Computer Vision?
- Image basics
- Using pre-trained models (e.g., MobileNet)
- Image classification hands-on example

AI Ethics & Responsible AI

- Bias in AI
- Privacy & data protection
- Explainable AI (XAI)
- Responsible AI practices

Mini Project: Data Analysis & ML Model

- Choose a dataset:
 - E.g. Titanic, Iris, MNIST (simple)
 - End-to-end workflow:
 - Load data
 - Clean & preprocess
 - 0 Train ML model
 - Evaluate results
 - Present findings

Project Presentation & Recap

- Students present mini-projects
- Q&A
- Career paths in AI
- Further learning resources

Skills Gained

- □ Understand core AI and ML concepts
- $\hfill\square$ Clean and preprocess data
- □ Build basic ML models (regression, classification, clustering)
- □ Evaluate model performance
- □ Understand basics of deep learning, NLP, and computer vision
- □ Build a simpleend-to-end ML project

Suggested Final Project Ideas

- Predict housing prices (Regression)
- Classify email spam vs. ham

- Cluster customers for marketing
- Sentiment analysis on product reviews
- Handwritten digit recognition (MNIST)

Resources

- scikit-learn documentation
- TensorFlow/Keras or PyTorch tutorials
- Kaggle datasets
- Google Colab
- Recommended books:
 - o "Hands-On Machine Learning with Scikit-Learn, Keras, and TensorFlow" Aurélien Géron
 - $\circ \quad \ \ \, \text{``Python Machine Learning''}-Sebastian Raschka$

Visit: www.sarvaindia.com