SARVA EDUCATION (SITED) (Running- National I.T & Skill Advancement Training Programme, Since 2008) (India's Best Computer Centre Affiliation Provider)

Course Overview

- **Duration:** 12 months (48 weeks)
 - **Level:** Beginner \rightarrow Advanced
- Prerequisites:
 - Basic computer knowledge
 - Familiarity with math (high school level algebra, some statistics)
 - Optional but helpful: basic Python
- Key Tools & Libraries:
 - Python, Jupyter Notebook/Colab
 - o NumPy, Pandas, Matplotlib, Seaborn, Plotly
 - o Scikit-learn
 - TensorFlow, Keras, PyTorch
 - o NLTK, SpaCy, Hugging Face Transformers
 - OpenCV
 - Flask, FastAPI, Streamlit
 - o MLflow, Docker, Kubernetes basics
 - Spark, Hadoop basics (for Big Data modules)
 - Cloud (AWS, GCP, Azure)
 - Git, GitHub
 - SQL, NoSQL basics

Detailed Syllabus

Month 1 – Introduction to AI & Python Foundations

Weeks 1-4

- What is AI, ML, DL?
- AI history and trends
- AI applications in various industries
- Python basics:
 - Syntax, variables, data types
 - Lists, tuples, dictionaries
 - \circ Loops, functions, file handling
- Working with Jupyter Notebook / Google Colab
- Version control basics (Git, GitHub)

Month 2 – Data Science & Visualization

Weeks 5-8

- NumPy deep dive
- Pandas for data manipulation
- Data loading from CSV, Excel, JSON, APIs
- Data cleaning:
 - Handling missing data
 - Duplicate handling
- Exploratory Data Analysis (EDA)
- Data visualization:
 - Matplotlib

- Seaborn
- Plotly

Month 3 - Statistics & Probability for ML

Weeks 9-12

.

- Descriptive statistics
- Measures of central tendency
- Variance, standard deviation
 - Probability concepts:
 - Conditional probability
 - Bayes' theorem
- Hypothesis testing
- Correlation vs causation
- Sampling methods
- Outlier detection basics

Month 4 - Core Machine Learning: Regression & Classification

Weeks 13-16

- ML pipeline overview
- Simple Linear Regression
- Multiple Linear Regression
- Polynomial Regression
- Regularization:
 - Lasso
 - 0 Ridge
- Logistic Regression
- K-Nearest Neighbors (KNN)
- Model evaluation:
 - MSE, RMSE, MAE
 - Confusion matrix
 - o Precision, Recall, F1-score, ROC, AUC

Month 5 – Machine Learning Algorithms Continued

Weeks 17-20

•

- Decision Trees
- Random Forests
- Naive Bayes
- Support Vector Machines (SVM)
 - Ensemble methods:
 - 0 Bagging
 - Boosting (AdaBoost, Gradient Boosting, XGBoost, LightGBM)
 - Cross-validation techniques
- Hyperparameter tuning:
 - Grid Search
 - Randomized Search

Month 6 – Unsupervised Learning & Feature Engineering

Weeks 21-24

- Unsupervised Learning concepts
- Clustering:
 - K-Means
 - Hierarchical Clustering
 - o DBSCAN
- Dimensionality Reduction:
 - o PCA
 - o t-SNE
- Anomaly Detection
 - Feature Engineering:
 - Encoding categorical data
 - Feature scaling
 - Binning, transformations

• Data pipelines in scikit-learn

Month 7 – Time Series & Advanced Topics

Weeks 25-28

- Time Series fundamentals
- Trend, seasonality, noise
- Stationarity
- AR, MA, ARIMA, SARIMA models
- Forecasting with machine learning
- Introduction to Prophet library

Month 8 – Deep Learning Fundamentals

Weeks 29-32

- Introduction to Neural Networks
- Perceptron, activation functions
- Loss functions & optimizers
- Backpropagation concept
- Building neural networks:
 - TensorFlow
 - Keras
- Introduction to PyTorch

Month 9 – Computer Vision

Weeks 33-36

•

.

- Understanding images as arrays
 - CNN architecture:
 - Convolutions
 - Pooling
 - Transfer Learning:
 - Using pre-trained models
- Data augmentation
 - Object detection basics:
 - o YOLO
 - o SSD
- OpenCV basics

• Mini-project: Image classification

Month 10 – Natural Language Processing (NLP)

Weeks 37-40

- NLP basics:
 - Tokenization
 - \circ Stopwords
 - Stemming, Lemmatization
 - Text vectorization:
 - Bag of Words
 - 0 TF-IDF
- Word embeddings:
 - Word2Vec
 - o GloVe
- Named Entity Recognition (NER)
- Sentiment analysis
- Transformers basics:
 - Hugging Face
 - BERT overview
- Chatbot fundamentals

Month 11 – Model Deployment & MLOps

Weeks 41-44

- Introduction to deployment:
 - 0 Flask
 - FastAPI
 - Streamlit
- Model serialization (pickle, joblib)
- Docker fundamentals
- MLflow for experiment tracking
- Cloud deployment:
 - AWS Sagemaker
 - GCP AI Platform
 - CI/CD basics for ML pipelines
- Monitoring ML models in production

Month 12 – Advanced AI Topics & Capstone Project

Weeks 45-48

.

- Reinforcement Learning basics
 - Generative AI concepts:
 - GANs introduction
 - Diffusion models (overview)
- Explainable AI (XAI)
- AI Ethics and Fairness
- Big Data overview:
- Hadoop, Spark basics
- Capstone Project:
 - End-to-end ML/DL solution
 - Presentation and reporting

Capstone Project (Last Month Focus)

Students choose a project topic to build a fully functioning AI solution:

- Data gathering
- Data cleaning and EDA
- Model building and evaluation
- Deployment (if feasible)
- Documentation & presentation

Example Capstone Projects:

- $\hfill\square$ Predictive maintenance for factories
- \Box Customer churn prediction
- □ Object detection in retail stores
- □ NLP chatbot for customer support
- □ Real-time fraud detection
- \Box Recommendation systems
- \Box Medical image classification
- □ Time-series forecasting for financial markets

Skills Gained

- Solid understanding of ML and DL theory and practice
- Python programming and data handling
- Advanced model tuning and optimization
- Computer Vision and NLP projects
- MLOps and deployment techniques
- Exposure to real-world projects and cloud services
- Foundation for research or advanced studies in AI

Recommended Resources

- Books:
 - o Hands-On Machine Learning Aurélien Géron
 - Deep Learning with Python François Chollet
 - 0 Python Machine Learning Sebastian Raschka
 - **Online platforms:**
 - Kaggle
 - o Coursera
 - Udemy
 - o YouTube channels: StatQuest, Data School

Documentation:

- o scikit-learn
- TensorFlow
- PyTorch
- Hugging Face

This 12-month curriculum is highly thorough, designed to turn beginners into proficient AI practitioners ready for industry roles or further specialization.

Visit: www.sarvaindia.com