SARVA EDUCATION (SITED) (Running- National I.T & Skill Advancement Training Programme, Since 2008) (India's Best Computer Centre Affiliation Provider)

Course Overview

- Duration: 24 weeks (~120 sessions)
- Level: Beginner \rightarrow Intermediate \rightarrow Advanced
- Prerequisites:
 - Comfortable using computers
 - Basic familiarity with Python recommended
- Tools & Libraries:
 - Python, Jupyter Notebook / Google Colab
 - o NumPy, Pandas, Matplotlib, Seaborn
 - Scikit-learn
 - o TensorFlow, Keras, PyTorch
 - o NLP libraries: NLTK, SpaCy, Hugging Face Transformers
 - OpenCV
 - Flask, FastAPI (for deployment)
 - MLflow, Streamlit, Docker basics
 - Cloud basics (AWS, GCP, Azure)

SYLLABUS DETAILS

Month 1 - Foundations of AI & Python Data Science

Week 1

- Introduction to AI & Machine Learning
 - AI definitions & history
 - Types of AI
 - AI in industries
- AI vs ML vs DL
- Overview of career paths in AI

Week 2

- Python refresher
 - Syntax, variables, data types
 - Lists, tuples, dictionaries
 - Functions, loops, file handling
 - Working in Jupyter/Colab

Week 3

- NumPy deep dive
- Pandas for data manipulation
- Data loading (CSV, Excel, JSON)

Week 4

- Data cleaning
- Handling missing data
- Exploratory Data Analysis (EDA)
- Data visualization
 - Matplotlib
 - Seaborn

Month 2 - Core Machine Learning

Week 5

- Machine Learning overview
 - Types of learning
 - ML pipeline
 - Regression basics
 - Simple Linear Regression
 - Multiple Linear Regression

Week 6

.

- Polynomial Regression
- Regularization: Ridge, Lasso
- Model evaluation metrics
 - 0 MAE, MSE, RMSE, R²

Week 7

- Classification basics
 - Logistic Regression
 - K-Nearest Neighbors (KNN)

Week 8

- Decision Trees
- Random Forests
- Naive Bayes
 - Model evaluation for classification
 - Confusion matrix
 - Precision, Recall, F1-score
 - o ROC, AUC

Month 3 - Advanced ML Techniques & Unsupervised Learning

Week 9

- Support Vector Machines (SVM)
- Ensemble methods
 - Gradient Boosting
 - XGBoost, LightGBM

Week 10

- Cross-validation techniques
 - Hyperparameter tuning
 - Grid Search
 - Random Search

Week 11

- Unsupervised Learning
 - Clustering concepts
 - K-Means
 - Hierarchical Clustering

Week 12

- DBSCAN
- Dimensionality reduction
 - o PCA
 - o t-SNE
- Anomaly detection basics

Month 4 – Real-World ML & Deployment Basics

Week 13

- Working with imbalanced datasets
- Feature engineering
 - o Encoding categorical data
 - Feature scaling
 - 0 Binning, transformations

Week 14

- Pipelines in scikit-learn
- Model saving and loading (pickle, joblib)

Week 15

- Introduction to model deployment
 - Flask / FastAPI basics
 - o Creating APIs for ML models

Week 16

- MLflow basics
- Introduction to cloud ML (AWS/GCP/Azure)
- Mini Project: Deploy an ML model

Month 5 – Deep Learning

Week 17

- Introduction to Neural Networks
 - Perceptron
 - Activation functions (ReLU, Sigmoid, Softmax)

Week 18

- Building Neural Networks with Keras/TensorFlow
- Loss functions & optimizers
- Backpropagation concept

Week 19

- CNNs (Convolutional Neural Networks)
 - Architecture
 - Pooling layers

Week 20

• Transfer learning

- Data augmentation
- CNNs for image classification (project)

Month 6 - NLP, Advanced Topics, and Capstone Project

Week 21

- Introduction to NLP
- Text preprocessing
 - Tokenization, stopwords, stemming, lemmatization

Week 22

- Feature extraction in NLP
 - Bag of Words
 - TF-IDF
 - 0 Word Embeddings (Word2Vec, GloVe)

Week 23

- Introduction to Transformers
 - Hugging Face basics
- Building a sentiment analysis model

Week 24

- Time Series basics
- Explainable AI (XAI)
- AI Ethics
- Capstone Project week

Capstone Project

During the final weeks, students work on a capstone project end-to-end:

- Data collection & cleaning
- Model development
- Model evaluation
- Deployment (if possible)
- Presentation of results

Example Capstone Ideas:

- \Box Sales forecasting
- \Box Image classification for custom data
- Text summarization or chatbot
- \Box Fraud detection
- □ Recommendation system
- □ Object detection for real-world use
- □ Sentiment analysis on social media data

Skills You'll Gain

Strong Python data science skills

- ML algorithms (regression, classification, clustering, ensemble models)
- Advanced model tuning & evaluation
- Deep Learning with TensorFlow/Keras
- Basic deployment skills (Flask/FastAPI, MLflow)
- Computer vision & NLP understanding
- Exposure to real-world projects
- Foundation for cloud-based ML work

Recommended Learning Resources

- Books:
 - o Hands-On Machine Learning Aurélien Géron
 - Python Machine Learning Sebastian Raschka
 - Deep Learning with Python François Chollet
- Platforms:
 - 0 Kaggle
 - Coursera
 - YouTube channels: StatQuest, Data School
- Official documentation:
 - o scikit-learn
 - TensorFlow
 - PyTorch
 - Hugging Face

This curriculum provides ample time for theory, practice, and real-world project work, equipping learners to either enter the AI workforce or pursue further specialization.

Visit: www.sarvaindia.com