

SARVA EDUCATION (SITED) (Running- An I.T & Skill Advancement Training Programme) - 1 -

Visit us at: www.sarvaindia.com Licensed by Govt. of India ISO 9001:2015 Certified

Simplified

e- Book

VISAUL BASIC

SARVA EDUCATION SM - An I.T & Skill Advancement Training Programme, Initiated by SITED®-India

An ISO 9001:2015 Certified Organization

Legal: No part of this e-book publication may be reproduced, stored in retrieval system or transmitted in any form or by any means, electronic, mechanical,
photocopying, and recording otherwise, without the prior permission of the abovementioned Organization. Every possible effort has been made in bringing
out the text in this e-book correctly and completely to fulfill the aspirations of students. The Organization does not take any warranty with respect to the
accuracy of the e-book and hence cannot be held liable in any way for any loss or damages whatsoever. This book shall be used for non commercial I.T Skill
Advancement awareness programme, not for commercial purposes publicly.
This is an independent work, complied solely for information and guidance for students studying under Organization’s I.T & Skill Advancement Training
literacy awareness Programmes. The informations have been compiled from various sources. The Organization does not assume any responsibility for
performance of any software, or any part thereof, described in the e-book. Product Names mentioned are used for identification/IT literacy awareness
purposes only and may be trademarks of their respective companies. All trademark, contents referred to in the e-book are acknowledged as properties of
their respective owners. The Centre Head & students should, in their own interest, confirm the availability of abovementioned e-books titles features or
softwares from their respective authorized Companies or Owners or dealers.

SARVA EDUCATION (SITED) (Running- An I.T & Skill Advancement Training Programme) - 2 -

Visit us at: www.sarvaindia.com Licensed by Govt. of India ISO 9001:2015 Certified

Unit-Ii

 VISUAL BASICI

CHAPTER – 1

HISTORY OF BASIC

Some Features of Visual Basic

 Full set of controls – you draw the application
 Lots of icons and pictures for your use
 Response to mouse and keyboard actions
 Clipboard and printer access
 Full array of mathematical, string handling, and graphics

functions
 Can handle fixed and dynamic variable and control arrays
 Sequential and random access file support
 Useful debugger and error – handling facilities
 Powerful database access tools
 ActiveX support
 Package & Development Wizard makes distributing your

applications simple

Visual Basic 6 versus Other Versions of Visual Basic

The original Visual Basic for DOS and Visual Basic For
Windows were introduced in 1991.
Visual Basic 3 (a vast improvement over previous versions) was
released in 1993.
Visual Basic 4 released in late 1995 (added 32 bit application
support)
Visual Basic 5 released in late 1996. New environment,
supported creation of ActiveX controls, deleted 16 bit application
support.
And, Visual Basic 6 – some identified new feature of Visual
Basic 6.

 Faster Compile
 New ActiveX data control object
 Allows database integration with wide variety of applications
 New data report designer
 New Package & Deployment Wizard
 Additional internet capabilities

Applications built using Visual Basic 6 will run with Windows
95, Windows 98, Windows 2000, or Windows NT.

Visual Basic 2008- is one of the latest versions of Visual Basic
launched by Microsoft in 2008. The latest version is Visual Basic
2010, launched this year. VB2008 is almost similar to Visual
Basic 2005 but it has added many new features. Visual Basic
2008 is a full fledged Object-Oriented Programming (OOP)
Language, so it has caught up with other OOP languages such as
C++, Java, C# and others. However, you don't have to know OOP
to learn VB2008. In fact, if you are familiar with Visual Basic 6,
you can learn VB2008 effortlessly because the syntax and
interface are similar.

INTRODUCTION

Visual Basic was designed in 1964 by John George Kemeny and Thomas
Eugene Kurtz at Dartmouth College in New Hampshire, USA to provide
computer access to non-science students.

B (BEGINNER’S)
A (ALL-PURPOSE)
S (SYMBOLIC)
I (INSTRUCTION)
C (CODE)

It is a family of high-level programming languages.

In the mid- 1970’s two college students write first Basic for a
microcomputer (Altair) – cost $350 on cassette tape. You may have heard
of them: Bill Gates and Paul Allen!

Every Basic since then essentially based on that early version. Examples
include: GW-Basic, QBasic, QuickBasic.
Visual Basic was introduced in 1991.

What is Visual Basic?

Visual Basic is a tool that allows you to develop Windows (Graphic
User Interface -GUI) applications. The applications have a familiar
appearance to the user. As you develop as a Visual Basic
programmer, you will begin to look at Windows applications in a
different light. You will recognize and understand how various
elements of Word, Excel Access and other applications work. You
will develop a new vocabulary to describe the elements of Windows
applications.

 Visual Basic: is event-driven, meaning code remains idle until
called upon to respond to some event (button pressing, menu
selection,…) Visual Basic is governed by an event processor.
Nothing happens until an event is detected. Once an event is
detected, the code corresponding to that event (event procedure) is
executed. Program control is then returned to the event processor.

All Windows applications are event-driven. For example, nothing
happens in World until you click on a button, select a menu option,
or type some text. Each of these actions is an event.

 The event-driven nature of Visual Basic makes it very easy to work

with. As you develop a Visual Basic application, event procedures
can be built and tested individually, saving development time. And,
often event procedures are similar in their coding, allowing reuse
(and lots of copy and paste).

SARVA EDUCATION (SITED) (Running- An I.T & Skill Advancement Training Programme) - 3 -

Visit us at: www.sarvaindia.com Licensed by Govt. of India ISO 9001:2015 Certified

Visual Basic Editions

Steps in Developing Application

 The Visual Basic development environment makes

building an application straight ward process. There are
three primary steps involved in building a Visual Basic
application:

 1. Draw the user interface by placing controls on the form
 2. Assign properties to controls
 3. Attach code to control events (and perhaps write other
procedures)

These same steps are followed whether you are building a very
simple application or one involving many controls and many
lines of code.

 The event-driven nature of Visual Basic allows you to

build your application in stages and test it at each stage.
You can build one procedure, or part of a procedure, at a
time and try it until it works as desired. This minimizes
errors and gives you, the programmer, and confidence as
your application takes shape.

 As you progress in your programming skills, always
remember to take this sequential approach to building a
Visual Basic application. Build a little, test a little,
modify a little and test again. You'll quickly have a
completed application. This ability to quickly build
something and try it makes working with Visual Basic
fun - not a quality found in some programming
environments! Now, we'll look at each step in the appli-
cation development process.

Drawing the User Interface and Setting Properties

Visual Basic operates in three modes:-

 Design mode:- used to build application
 Run mode:- used to run the application
 Break mode:- application halted and debugger is

available

We focus here on the design mode.

 Six windows appear when you start Visual Basic. Each

window can be viewed (made visible) by selecting menu
options, depressing function keys or using the toolbar.
Use the method you feel most comfortable with.

 The Main Window consists of the title bar, menu bar,
and toolbar. The title bar the project name, the current
Visual Basic operating mode, and the current form. The
menu bar has drop-down menus from which you control
the operation of the Visual Basic environment. The
toolbar has buttons that provide shortcuts to some of the
menu options. The main window also shows the location
of the current form relative to the upper left corner of the
screen and the width and length of the current form of
particular interest is the Help menu item. The Visual
Basic on-line help system is invaluable as you build
applications. Become accustomed with its use. Usually

Visual Basic is available in three versions, each geared to meet a specific set
of development requirement:

 The Visual Basic learning edition allows programmers to easily create

powerful applications for Microsoft Windows and Windows NT®. It
includes all intrinsic controls, plus grid, tab, and data-bound controls.

 The professional edition provides computer professionals with a full
featured set of tools for development solutions for others. It includes all
the features of the learning edition, plus additional ActiveX controls,
the Internet Information Server Application Designer, integrated Visual
Database Tools and Environment, Active Data Objects, and the
Dynamic HTML Page Designer. Documentation provided with the
Professional edition includes the Visual Studio Professional Features
book plus Microsoft Developer Network CDs containing full online
documentation.

 The Enterprise edition allows professionals to create robust distributed
applications in a team setting. It includes all the feature of the
Professional edition, plus Back Office tools such as SQL Server,
Microsoft Transaction Server, Internet Information Server, Visual
SourceSafe, SNA Server, and more. Printed documentation provided
with the Enterprise edition includes the Visual Studio Enterprise
Features book plus Microsoft Developer Network CDs containing full
online 7.

Structure of a Visual Basic Application

Project (.VBP, .MAK)

Application (Project) is made up of:-

 Forms: Windows that you create for user interface.
 Controls: Graphical features drawn on forms to allow user interaction

(text boxes, labels, scroll bars. Command buttons, etc.) (Forms and
Controls are objects.

 Properties: Every characteristic of a form or control is specified by a
property. Example properties includes names, captions, size, color,
position, and contents. Visual Basic applies default properties. You can
change properties at design time or run time.

 Methods: Built-in procedure that can be invoked to impart some action
to a particular object.

 Event Procedures: Code related to objects. This is the code that is
executed when a certain event occurs.

 General Procedures: Code not related to objects. This code must be
invoked by the application.

 Modules: Collection of general procedures, variable declarations and
constant definitions used by application.

SARVA EDUCATION (SITED) (Running- An I.T & Skill Advancement Training Programme) - 4 -

Visit us at: www.sarvaindia.com Licensed by Govt. of India ISO 9001:2015 Certified

just pressing <F1> can get you the help you need.
Declaring Variables with Data Types
Before using a non-Variant variable, you most use the Private,
Public, Dim or Static statement to declare it As type. For
example, the following statements declare an Integer, Double,
String, and Currency type, respectively:

Private I As Integer
Dim Amt As Double
Static YourName As String
Public BillsPaid As Currency

A Declaration statement can combine multiple
declarations, as in these statements:

Private I As Integer, Amt As Double
Private YourName As String, BillsPaid As Currency
Private Test, Amount, J As Integer

Note: If you do not supply a data type. The variable is given
the default type. In the preceding example, the variables Test
and Amount are of the Variant data type. This may surprise
you if your experience with other programming languages
leads you to expect all variables in the same declaration
statement to have the same specified type (in this case,
Integer).

Numeric Data Types

Visual Basic supplies several numeric data types — Integer,
Long (long integer), Single (single-precision floating point),
Double (double-precision floating point), and Currency. Using
a numeric data type generally uses less storage space than a
variant.
It you know that a variable will always store whole numbers
(such as 12) rather than numbers with a fractional amount
(such as 3.57), declare it as an Integer or Long type. Opera-
tions are faster with integers, and these types consume less
memory than other data types. They are especially useful as
the counter variables in For...Next loops.
If the variable contains a fraction, declare it as a Single,
Double, or Currency variable. The Currency data type supports
up to four digits to the right of the decimal separator and
fifteen digits to the left; it is an accurate fixed-point data type
suitable for monetary calculations. Floating-point (Single and
Double) numbers have much larger ranges than Currency, but
can be subject to small rounding errors.

Note: Floating-point values can be expressed as mmmEeee or
mmmDeee, in which mmm is the mantissa and eee is the
exponent (a power of 10). The highest positive value of a
Single data type is 3.402823E+38, or 3.4 times 10 to the 38th
power; the highest positive value of a Double data type is
1.7976931348G232D+308, or about 1.8 times 10 to the 308th
power. Using D to separate the mantissa and exponent in a
numeric literal causes the value to be treated as a Double data
type. Likewise, using

The Byte Data Type

If the variable contains binary data, declare it as an array of the
Byte data type. (Arrays are discussed in "Arrays" later in this
chapter). Using Byte variables to store binary data preserves it

 The Form Window is central to developing Visual Basic applications.
It is where you draw your application.

 The Toolbox is the selection menu for controls used in your

application. Help with any control is available by clicking the control
and pressing <F1>

 The Properties Window is used to establish initial property values for
objects (controls). The drop-down box at the top of the window lists
all objects in the current form. Two views are available: Alphabetic
and Categorized Under this box are the available properties for the
currently selected object Help with any property can be obtained by
highlighting the property of interest and pressing <F1>.

 The Form Layout Window shows where (upon program execution)
your form will be displayed relative to your monitor's screen:

 The Project Window displays a list of all forms and modules
making up your application. You can also obtain a view of the Form
or Code windows (window containing the actual Basic coding) from
the Project window.

 Variable are used by Visual Basic to hold information needed by
your application. Rules used in naming variable:
o No more than 40 characters
o They may include letters, numbers, and underscore (__)
o The first character must be a letter
o You cannot use a reserved word (word needed by Visual Basic)

Data Types

Variables are placeholders used to store values; they have names and data
types. The data type of a variable determines how the bits representing those
values are stocked in the computer's memory. When you declare a variable,
you can also supply a data type for it. All variables have a data type that
determines what kind of data they can store.
By default, if you don't supply a data type, the variable is given the Variant
data type. The Variant data type is like a chameleon — it can represent many
different data types in different situations. You don't have to convert between
these types of data when assigning them to a Variant variable: Visual Basic
automatically performs any necessary conversion. If you know that a
variable will always store data of a particular type, however, Visual Basic
can handle that data more efficiently if you declare a variable of that type.
For example, a variable to store a person's name is best represented as a
string data type, because a name is always composed of characters.
Data types apply to other things besides variables. When you assign a value
to a property, that value has a data type; arguments to functions also have
data types. In fact, just about anything in Visual Basic that involves data also
involves data types.
You can also declare arrays of any of the fundamental types.

SARVA EDUCATION (SITED) (Running- An I.T & Skill Advancement Training Programme) - 5 -

Visit us at: www.sarvaindia.com Licensed by Govt. of India ISO 9001:2015 Certified

‘Dim intx As Integer
‘Dim strY As String
‘strY = `100.23”
‘intX = strY `Passes the string to a numeric
 `Variable.
‘List1.AddItem Cos (strY) `Adds cosine of number in
 ` the string to the list box.
‘strY Cos (strY) `Passes cosine to the
 `string variable.
‘TextI. Text = strY `String variable prints in
 `the text box.

Visual Basic will automatically coerce the variables to the appropriate
data type. You should use caution when exchanging strings and
numbers; passing a non-numeric value in the string will cause a run-
time error to occur.
if you have a variable that will contain simple true/false, yes/no, or
on/off information, you can declare it to be of type Boolean. The
default value of Boolean is False. In the following example,
b1nRunning is a Boolean variable which stores a simple yes/no
setting.

Dim bIn Running As Boolean
 `Check to see if the tape is running.
 If Recorder Direction = 1 Then
 bInRunning = True
End if

The Date Data Type

Date and time values can be contained both in the specific Date data
type and in Variant variables. The same general characteristics apply
to dates in both types.
When other numeric data types are converted to Date, values to the left
of the decimal represent date information, while values to the right of
the decimal represent time. Midnight is 0, and midday is 0.5. Negative
whole numbers represent dates before December 30, 1889

The Object Data Type

Object variables are stored as 32-bit (4-byte) addresses that refer to
objects within an application or within some other application. A
variable declared as Object is one that can subsequently be assigned
(using the Set statement) to refer to any actual object recognized by the
application.

Dim objDb As Object
Set objDb = OpenDatabase ("c: \Vb5\BibLio.mdb")

When declaring object variables, try to use specific classes (such as
TextBox instead of control or, in the preceding case, Database instead
of object) rather than the generic Object.

Visual Basic can resolve references to the properties and methods of
objects with specific types before you run an application. This allows
the application to perform faster at run time. Specific classes are listed
in the Object Browser.

When working with other applications' objects, instead of using a
Variant or the generic Object, declare objects as they are listed in the
Classes list in the Object Browser. This ensures that Visual Basic
recognizes the specific type of object you're referencing^ allowing the
reference to be resolved at run time.

during format conversions. When String variables are converted
between ANSI and Unicode formats, any binary data in the variable
is corrupted. Visual Basic may automatically convert between ANSI
and Unicode when:

• Reading from files
• Writing to files
• Calling DLLs
• Calling methods and properties on objects

All operators that work on integers work with the Byte data type
except unary minus. Since Byte is an unsigned type with the range 0-
255, it cannot represent a negative number. So for unary minus,
visual Basic coerces the Byte to a signed integer first.
All numeric variables can be assigned to each other and to variables
of the Variant type. Visual Basic rounds off rather than truncates the
fractional part of a floating-point number before assigning it to an
integer.

The String Data Type

If you have a variable that will always contain a string and never a
numeric value, you can declare it to be of type .String:

 Private S as String

You can then assign strings to this variable and manipulate it using
string functions

 S = "Database"
 S = Left (S, 4)

By default, a string variable or argument is a variable-length string',
the string grows or shrinks as you assign new data to it. You can also
declare strings that have a fixed length. You specify a fixed-length
string with this syntax:
 String * size

For example, to declare a string that is always 50 characters long,
use code like this:

 Dim EmpName As String * 50

If you assign a string of fewer than 50 characters, EmpName is
padded with enough trailing spaces to total 50 characters. If you
assign a string that is too long for the fixed-length siring, Visual
Basic simply truncates the characters.
Because fixed-length strings are padded with trailing spaces, you
may find the Trim and RTrim functions, which remove the spaces,
useful when working with them.
Fixed-length strings in standard modules can be declared as Public or
Private\ In forms and class modules, fixed-length strings must be
declared Private.

Exchanging Strings and Numbers.

You can assign a string to a numeric variable if the string represents
a numeric value. It's also possible to assign a numeric value to a
string variable. For example, place a command button, text box and
list box on a form. Enter the following code in the command button's
Click event Run the application, and click the command button.
Private Sub Command 1 Click ()

SARVA EDUCATION (SITED) (Running- An I.T & Skill Advancement Training Programme) - 6 -

Visit us at: www.sarvaindia.com Licensed by Govt. of India ISO 9001:2015 Certified

The Empty Value

Sometimes you need to know if a value has ever been assigned to a
created variable. A Variant variable has the Empty value before it is
assigned a value. The Empty value is a special value different from
0, a zero-length string (‘’ “), or the Null value. You can test for the
Empty value with the IsEmpty function:

 If I sEmpt y (z) Then z = 0

When a Variant contains the Empty value, you can use it in
expressions; it is treated as either 0 or a zero-length string,
depending on the expression. The Empty value disappears as soon
as any value (including 0, a zero-length string, or Null) is assigned
to a Variant variable. You can set a Variant variable back to Empty
by assigning the keyword Empty to the Variant.

The null Value

The variant data type can contain another special value: Null. Null
is commonly used in database applications to indicate unknown or
missing data. Because of the way it is used in database, Null has
some unique characteristics:
• Expressions involving Null always result in Null. Thus, Null is
said to "propagate" through expressions; if any part of the
expression evaluates to Null, the entire expression evaluates to Null.
• Passing Null, a Variant containing Null, or an expression that
evaluates to Null as an argument to most functions causes the
function to return Null.
• Null values propagate through intrinsic functions that return
Variant data types. You can also assign Null with the Null keyword:

Z = Null
You can use the IsNull function to test if a Variant variable contains
Null.

If IsNull (X) Arid IsNull (Y) Then
 Z = Null Else?
Else
 Z = 0
End If

If you assign Null to a variable of any type other than Variant, a
trappable error occurs. Assigning Null to a Variant variable doesn't
cause an error, and Null will propagate through expressions
involving Variant variables (though Null does not propagate
through certain functions). You can return Null from any Function
procedure with a Variant return value. Variables are not set to Null
unless you explicitly assign Null to them, so if you don't use Null in
your application, you don't have to write code that tests for and
handles it. For More Information For information on how to use
Null in expressions, see "Null" in the Language Reference.

The Error-Value

In a Variant, Error is a special value used to indicate that an error
condition has occurred in a procedure. However, unlike for other
kinds of errors, normal application-level error handling does not
occur. This allows you, or the application itself, to take some
alternative based on the error value. Error values are created by

converting real numbers to error values using the CVErr function

Converting Data Types

Visual Basic provides several conversion functions you can use to
convert values into a specific data type. To convert a value to Currency,
for example, you use the CCur function:
PayPerWeek = CCur (Hours * hourlyPay)

Conversion

Note: Values passed to a conversion function must be valid for the
destination data type or an error occurs. For example, if you attempt to
convert a Long to an Integer, the Long must be within the valid range
for the Integer data type. For More Information See the Language
Reference for a specific conversion function.

The Variant Data Type

A Variant variable is capable of storing all system-defined types of
data. You don't have to convert between these types of data if you
assign them to a Variant variable; Visual Basic automatically performs
any necessary conversion. For example:

‘Dim SomeValue `Variant by default.
‘SomeValue = “17” `SomeValue contains “17” (a two-

`character string) .
‘SomeValue = SomeValue - 15 `SomeValue now contains
 `The numeric Value 2.
‘SomeValue = "U" & SomeValue `SomeValue now contains
 ' "U2” (a two- character string) .

While you can perform operations on Variant variables without much
concern for the kind of data they contain, there are some traps you must
avoid.
• If you perform arithmetic operations or functions on a Variant, the

Variant must contain something that is a number. For details, see the
section, "Numeric Values Stored in Variants," in "Advanced Variant
Topics."

• If you are concatenating strings, use the & operator instead of the +
operator. For details, see the section, "Strings Stored in Variants," in
"Advanced Variant Topics." In addition to being able to act like the
other standard data types, Variants can also contain three special
values: Empty, Null, and Error.

SARVA EDUCATION (SITED) (Running- An I.T & Skill Advancement Training Programme) - 7 -

Visit us at: www.sarvaindia.com Licensed by Govt. of India ISO 9001:2015 Certified

CHAPTER – 2

ADVANCED VARIANT TOPICS

Sometimes you want to use a specific representation for a number. For
example, you might want a Variant variable to store a numeric value
as Currency to avoid round-off errors in later calculations. Visual
Basic provides several conversion functions that you can use to
convert values into a specific type (see "Converting Data Types"
earlier in this chapter). So convert a value to Currency, for example,
you use the CCur function:

PayPerWeek = CCur (hours * hour l yPay)

An error occurs if you attempt to perform a mathematical operation or
function on a Variant that does not contain a number or something that
can be interpreted as a number. For example, you cannot perform any
arithmetic operations on the value U2 even though it contains a
numeric character, because the entire value is not a valid number.
Likewise, you cannot perform any calculations on the value 1040EZ;
however, you can perform calculations on the values +10 or -1.7E6
because they are valid numbers. For this reason, you often want to
determine if a Variant variable contains a value that can be used as a
number The IsNumeric function performs this task:

Do
 anyNumber = Input Box ("Enter a number”)
Loop Until IsNumeric (anyNumber)
MsgBox "The square root is: "& Sqr (anyNumber)

When Visual Basic converts a representation that is not numeric (such
as a string containing a number) to a numeric value, it uses the
Regional settings (specified in the Windows Control Panel) to interpret
the thousands separator, decimal separator, and currency symbol.
Thus, if the country setting in the Windows Control Panel is set to
United States, Canada, or Australia, these two statements would return
true:

IsNumeric (“$ 100")
IsNumeric ("1,560. 50")

While these two statements would return false:

IsNumeric ("DM100")
IsNumeric ("I .560, 50")

However, the reverse would be the case — the first two would return
false and the second two true — if the country setting in the Windows
Control Panel was set to Germany.
If you assign a Variant containing a number to a string variable or
property, Visual Basic converts the representation of the number to a
string automatically. If you want to explicitly convert a number to a
string, use the CStr function. You can also use the Format function to
convert a number to a string that includes formatting such as currency,
thousands separator, and decimal separator symbols. The Format
function automatically uses the appropriate symbols according to the
Regional Settings Properties dialog box in the Windows Control Panel.
For More Information: See "Format Function" and topics about the
conversion functions in the Language Reference. For information on
writing code for applications that will be distributed in foreign
markets, see "International Issues."

Internal Representation of Values in Variants

Variant variables maintain an internal representation of the values
that they store. This representation determines how Visual Basic
treats these values when performing comparisons and other
operations. When you assign a value to a Variant variable, Visual
Basic uses the most compact representation that accurately records
the value. Later operations may cause-Visual Basic to change the
representation it is using for a particular variable. (A Variant variable
is not a variable with no type; rather, it is a variable that can freely
change its type) These internal representations correspond to the
explicit data types discussed in "Data Types" earlier in this chapter.

Note: A variant always takes up 16 bytes, no matter what you store
in it. Objects, strings, and arrays are not physically stored in the
Variant; in these cases, tour bytes of the Variant are used to hold
either an object reference, or a pointer to the string or array. The
actual data are stored elsewhere.
Most of the time, you don't have to be concerned with what internal
representation Visual Basic is using for a particular variable; Visual
Basic handles conversions automatically. If you want to know what
value Visual Basic is using, however, you can use the VarType
function. For example, if you store values with decimal fractions in a
Variant variable. Visual Basic always uses the Double internal
representation, if you know that your application does not need the
high accuracy (and slower speed) that a Double value supplies, you
can speed your calculations by converting the values- to Single, or
even to Currency:

 If VarType (X) = 5 Then X = CSnq (X) `Convert to Single.

With an array variable, the value of VarType is the sum of the array
and data type return values. For example, this array contains Double
values:

Private Sub Form Click ()
 Dim db1Sample (2) As Double
 MsgBox VarType (db1Sample)
End Sub

Future versions of Visual Basic may add additional Variant
representations, so any code you write that makes decisions based on
the return value of the VarType function should gracefully handle
return values that are not currently defined.
For More Information: For information about the VarType function,
see "VarType Function" in the Language Reference. To read more
about arrays, see "Arrays" later in this chapter.

Numeric Values Stored in Variants

When you store whole numbers in Variant variables, Visual Basic
uses the most compact representation possible. For example, if you
store a small number without a decimal fraction, the Variant uses an
Integer representation for the value. If you then assign a larger
number, Visual Basic will use a Long value or, if it is very large or
has a fractional component, a Double value.

SARVA EDUCATION (SITED) (Running- An I.T & Skill Advancement Training Programme) - 8 -

Visit us at: www.sarvaindia.com Licensed by Govt. of India ISO 9001:2015 Certified

You can use date/time literals in your code by enclosing them with the
number sign (#), in the same way you enclose string literals with
double quotation marks (""). For example, you can compare a Variant
containing a date/time value with a literal date:

 If SomeDate > #3/6/93# Then

Similarly, you can compare a date/time value with a complete
date/time literal:

 If SomeDate > #3/6/93 1:20pm# Then

If you do not include a time in a date/time literal, Visual Basic sets the
time part of the value to midnight (the start of the day). If you do not
include a date in a date/time literal, Visual Basic sets the date part of
the value to December 30, 1899.

Visual Basic accepts a wide variety of date and time formats in literals.
These are all valid date/time values:

SomeDate = #3-6-93 13:20#
SomeDate= #March 27, 1993 1: 20am#
SomeDate= #Apr-2-93#
SomeDate= #4 April 1993#

For More Information: For information on handling dates in
international formats, see "International Issues."

In the same way that you can use the IsNumeric function to determine
if a Variant variable contains a value that can be considered a valid
numeric value; you can use the IsDate function to determine if a
Variant contains a value that can be considered a valid date/time value.

You can then use the CDate function to convert the value into a
date/time value. For example, the following code tests the Text
property of a text box with IsDate. If the property contains text that
can be considered a valid date, Visual Basic converts the text into a
date and computes the days left until the end of the year:

Dim SomeDate, daysleft
If IsDate (Text1.Text) Then
SomeDate = Cdate (Text1.Text)
Daysleft = Date Seria1 (Year (Some Date) +
1, 1, 1) – SomeDate
Text2.Text = daysleft & “days left in the year.”
Else
MsgBox Text1.Text & “is not a valid date.”
End If

Objects Stored in Variants

Objects can be stored in Variant variables. This can be useful when
you need to gracefully handle a variety of data types, including
objects. For example, all the elements in an array must have the same
data type. Setting the data type of an array to Variant allows you to
store objects alongside other data types in an array.

Strings Stored in Variants

Generally, storing and using strings in Variant variables poses few
problems. As mentioned earlier, however, sometimes the result of the
+ operator can be ambiguous when used with two Variant values. If
both of the Variants contain numbers, the + operator performs addi-
tion. If both of the Variants contain strings, then the + operator
performs string concatenation. But if one of the values is represented
as a number and the other is represented as a string, the situation
becomes more complicated. Visual Basic first attempts to convert the
string into a number. If the conversion is successful, the + operator
adds the two values; it unsuccessful, it generates a Type mismatch
error. To make sure that concatenation occurs, regardless of the
representation of the value in the variables, use the & operator. For
example, the following code:

Sub Form__Click ()

‘Dim X, Y
X = “6”
Y = “7”
Print X + Y, X & Y
X = 6
Print X + Y, X & Y

End Sub

produces this result on the form:
13 67
13 67

Note: Visual Basic stores strings inter "Internally as Unicode. For
more information on Unicode, see “International Issue.”

Date/Time Values Stored in Variants

Variant variables can also contain date/time values several functions
return date/time values. For example, DateSerial returns the number
of days left in the year:

Private Sub Form Click ()

Dim rightnow, daysleft, hourleft, minutesleft
Rightnow = Now ‘Now returns the current date/time.
‘Daysleft = Int (DateSerial (Year (right now)
(+ 1, 1, 1 - rightnow)
hoursleft = 24 - Hour (rightnow)
minutesleft = 60 - Minute (rightnow)
Print daysleft & “days left in year.”
Print hoursleft & “ hours left in the day.”
Print minutesleft & “minutes left in the hour.”

End Sub

You can also perform math on date/lime values. Adding or
subtracting integers adds or subtracts days; adding or subtracting
fractions adds or subtracts time. Therefore, adding 20 add 20 days,
while subtracting 1/24 subtracts one hour. The range for dates stored
in Variant variables is January 1, 0100, to December 31, 9999.
Calculations on dates don't take into account the calendar revisions
prior to the switch to the Gregorian calendar, however, so
calculations producing date values earlier than the year in which the
Gregorian calendar was adopted (1752 in Britain and its colonies at
that time; earlier or later in other countries) will be incorrect.

SARVA EDUCATION (SITED) (Running- An I.T & Skill Advancement Training Programme) - 9 -

Visit us at: www.sarvaindia.com Licensed by Govt. of India ISO 9001:2015 Certified

Global level variables retain their value and are available to all
procedures within an application. Module level variables are
declared in the declarations part of the general object of a module's
code window. (It is advisable to keep all global variables in one
module.) Use the Global keyword:

Global Mylnt as Integer
Global MyDate as Date

 What happens if you declare a variable with the same name

in two or more places? More local variables shadow (are
accessed in preference to) less local variables. For example,
if a variable Mylnt is defined as Global in a module and
declared local in a routine MyRoutine, while in MyRoutine,
the local value of Mylnt is accessed. Outside MyRoutine,
the global value of Mylnt is accessed.

Arrays

If you have programmed in other languages, you're probably
familiar with the concept of arrays. Arrays allow you to refer to a
series of variables by the same name and to use a number (an index)
to tell them apart. This helps you create smaller and simpler code in
many situations, because you can set up loops that deal efficiently
with any number of cases by using the index number. Arrays have
both upper and lower bounds, and the elements of the array are
contiguous within those bounds. Because Visual Basic allocates
space for each index number, avoid declaring an array larger than
necessary.
Note: The arrays discussed in this section are arrays of variables,
declared in code. They are different from the control arrays you
specify by setting the Index property of controls at design time.
Arrays of variables are always contiguous; unlike control arrays,
you cannot load and unload elements from the middle of the array.
All the elements in an array have the same data type. Of course,
when the data type is Variant, the individual elements may contain
different kinds of data (objects, strings, numbers, and so on). You
can declare an array of any of the fundamental data types, including
user-defined types (described in the section, "Creating Your Own
Data Types," in "More About Programming") and object variables
(described in "Programming with Objects"). In Visual Basic there
are two types of arrays: a fixed-size array which always remains the
same size, and a dynamic array whose size can change at run-time.

Declaring Fixed-Size Arrays

There are three ways to declare a fixed-size array, depending on the
scope you want the array to have:
• To create a public array, use the Public statement in the
Declarations section of a module to declare the array.
• To create a module-level array, use the Private statement in the
Declarations section of a module to declare the array.
• To create a local array, use the Private statement in a procedure
to declare the array.

Setting Upper and Lower Bounds

When declaring an array, follow the array name by the upper bound
in parentheses. The upper bound cannot exceed the range of a Long
data type (-2,147,483,648 to 2,147,483,647). For example, these
array declarations can appear in the Declarations section of a
module:

Visual Basic Data Types

To implicitly type a variable, use the corresponding suffix shown above
in the data type table. For example,

TextValue$ = “This is a string"
creates a string variable, while
Amount% = 300
creates an integer variable.

 There are many advantages to explicitly typing variables.

Primarily, we insure all computations are properly done,
mistyped variable names are easily spotted, and Visual Basic
will take care of insuring consistency in upper and lower case
letters used in variable names. Because of these advantages, and
because it is good programming practice, we will explicitly type
all variables.

 To explicitly type a variable, you must first determine its scope.
There are four levels of scope:

 Procedure level
 Procedure level, static
 Form and module level
 Global level

 Within a procedure, variables are declared using the Dim

statement:

Dim Mylnt as Integer
Dim MyDouble as Double
Dim MyString As String, YourString as String

 Procedure level variables declared in this manner do not retain
their value once a procedure terminates.

 To make a procedure level variable retain its value upon exiting
the procedure, replace the Dim keyword with Static:

Static Mylnt as Integer
Static MyDouble as Double.

Form (module) level variables retain their value and are available to all
procedures within that form (module). Form (module) level variables
are declared in the declarations part of the general object in the form's
(module's) code window. The Dim keyword is used:

Dim Mylnt as Integer
Dim MyDate as Date

SARVA EDUCATION (SITED) (Running- An I.T & Skill Advancement Training Programme) - 10 -

Visit us at: www.sarvaindia.com Licensed by Govt. of India ISO 9001:2015 Certified

 Multidimensional Arrays

Sometimes you need to keep track of related information in
an array. For example, to keep track of each pixel on your
computer screen, you need to refer to its X and Y
coordinates This can be done using a multidimensional
array to store the values.
With Visual Basic, you can declare arrays of multiple
dimensions. For example, the following statement declares a
two-dimensional 10-by-10 array within a procedure:

Static MatrixA (9, 9) As Double

Either or both dimensions can be declared with explicit
lower bounds:

Static MatrixA (1 To 10, 1 To 10) As Double

You can extend this to more than two dimensions. For
example:

Dim MultiD(3, 1 To 10, 1 To 15)

This declaration creates an array that has three dimensions
with sizes 4 by 10 by 15. The total number of elements is
the product of these three dimensions, or GOO Note When
you start adding dimensions to an array, the total storage
needed by the array increases dramatically, so use
multidimensional arrays with care. Be especially careful
with Variant arrays, because they are larger than other data
types

Using Loops to Manipulate Arrays

You can efficiently process a multidimensional array by
using nested For loops.
For example, these statements initialize every element in
m.i t t ; ,..\ to a value based on its location in the array:

Dim. I As Integer, J As Integer
Static MatrixA (1 To 10, 1 To 10) As Double
For 1 = 1 To 10
 For J = 1 To 10
 MatrixA (1, J) = 1 * 10 + J
 Next J
Next 1

Dynamic Arrays
See Also
Sometimes you may not know exactly how large to make an
array. You may want to have the capability of changing the
size of the array at run time.
A dynamic array can be resized at any time. Dynamic arrays
are among the most flexible and convenient features in
Visual Basic, and they help you to manage memory
efficiently.
For example, you can use a large array for a short time and
then free up memory to the system when you're no longer
using the array.
The alternative is to declare an array with the largest
possible size and then ignore array elements you don't need.
However, this approach, if overused, might cause the
operating environment to run low on memory.

Dim Counters (14) As Tnteger `15 elements.
Dim Sums (20) As Double ` 21 elements.

To create a public array, you simply use Public in place of Dim:

Public Counters (14) As Integer
Public Sums(20) As Double

The same declarations within a procedure use Dim:

Dim, Counters (14) As Integer
Dim. Sums (20) As Double

The first declaration creates an array with 15 elements, with index numbers
running from 0 to 14. The second creates an array with 21 elements, with index
numbers running from 0 to 20. The default lower bound is 0.
To specify a lower bound, provide it explicitly (as a Long data type) using the
to keyword:

Dim Counters (1 To 15) As Integer
Dim Sums (100 To 120) As String

In the preceding declarations, the index numbers of counters range from 1 to
15, and the index.

Arrays that Contain Other Arrays

It's possible to create a Variant array, and populate it with other arrays of
different data types. The following code creates two arrays, one containing
integers and the other strings It then declares a third Variant array and populates
it with the integer and string arrays.

Private Sub Command_Click ()
 Dim intX As Integer `Declare counter, variable.

`Declare, and populate an integer array.
Dim countersA (5) As Integer
For intX = 0 To 4

countersA (intX)= 5
Next intX

 `Declare arid populate a string array.
 Dim counterB (5) As Integer

 For intX = 0 To 4
countersB (int.X) = "hello"

Next intex
 Dim. arrX(2) As Variant ` Doclare a new t wo- members
 ` array.
 arraX (1) = countersA () ` Populate the array with
 ` others arrays.
 arrX (2) = comilersB ()
 MsgBox arrX (l) (2) ` Display a member of each
 ` array.
 MsgBox arrX, (2) (3)
End Sub

SARVA EDUCATION (SITED) (Running- An I.T & Skill Advancement Training Programme) - 11 -

Visit us at: www.sarvaindia.com Licensed by Govt. of India ISO 9001:2015 Certified

Preserving the Contents of Dynamic Arrays

Each time you execute the ReDim statement, all the values
currently stored in the array are lost. Visual Basic resets the
values to the Empty value (for Variant arrays), to zero (for
numeric arrays), to a zero-length string (for string arrays), or to
Nothing (for arrays of objects)
This is useful when you want to prepare the array for new data, or
when you want to shrink.
The size of the array to take up minimal memory. Sometimes you
may want to change the size of the array without losing the data
in the array. You can do this by using ReDim with the Preserve
keyword. For example, you can enlarge an array by one element
without losing the values of the existing elements using the
Bound function to refer to the upper bound:

ReDim Preserve DynArray (UBound (DynArray) + 1)

Only the upper bound of the last dimension jn a multidimensional
array can be changed when you use the Preserve keyword; if you
change any of the other dimensions, or the lower bound of the
last dimension, a run-time error occurs. Thus, you can use code
like this:

ReDim Preserve Matrix (10, UBound (Matrix, 2) + 1)

But you cannot use this code:

ReDim Preserve Matrix (UBound (Matrix, 1) + 1, 10)

For More Information: For information about dynamic arrays,
see "ReDim Statement" in the Language Reference. To learn
more about object arrays, see "Programming with Objects".
Forms or modules, you will also be prompted to save those files.
I always use this for new projects.
There is a corresponding Open command under the File menu to
open project files.

To create a dynamic array

Declare the array with a Public statement (if you want the array to be
public) or Dim statement at the module level (if you want the array to be
module level), or a Static or Dim statement in a procedure (if you want the
array to be local) You declare the array as dynamic by giving it an empty
dimension list.

Dim DynArray ()

Allocate the actual number of elements with a ReDim statement.

ReDim DynArray (X + 1)

The ReDim statement can appear only in a procedure. Unlike the Dim and
Static statements, ReDim is an executable statement — it makes the
application carry out an action at run time.
The ReDim statement supports the same syntax used for fixed arrays.
Each ReDim can change the number of elements, as well as the lower and
upper bounds, for each dimension. However, the number of dimensions in
the array cannot change.

ReDim DynArray (4 to 12)

For example, the dynamic array Matrix1 is created by first declaring it at
the module level:

Dim Matrix1 () As Integer

A procedure then allocates space for the array:

Sub CalcValuesNow ()
 .
 .
 .

ReDim Matrix1 (19, 29)
 End Sub

The ReDim statement shown here allocates a matrix of 20 by 30 integers
(at a total size of 600 elements). Alternatively, the bounds of a dynamic
array can be set using variables:

ReDim Matrix1(X, Y)

Note: You can assign strings to resizable arrays of bytes. An array of
bytes can also be assigned to a variable-length string. Be aware that the
number of bytes in a string varies among platforms. On Unicode platforms
the same string contains twice as many bytes as it does on a non-Unicode
platform.

SARVA EDUCATION (SITED) (Running- An I.T & Skill Advancement Training Programme) - 12 -

Visit us at: www.sarvaindia.com Licensed by Govt. of India ISO 9001:2015 Certified

CHAPTER – 3

VISUAL BASIC STATEMENTS AND EXPRESSIONS

lblTime. Caption = “The current time is” & Format
(Now, “hh : mm”)

textSample.Text = “Hook this “ + “to this”

Be aware that I use both concatenation operators in these
notes – I’m not very consistent (an old habit that’s hard to
break).

There are six comparison operators in Visual Basic:

Operators Comparison
> Greater than
< Less than

>= Greater than or equal to
<= Less than or Equal to
= Equal to

<> Not equal to

 The result of a comparison operation is a Boolean
value (True or False).

 We will use three logical operators:
 Operator Operation

Not Logical not
And Logical and
Or Logical or

 The Not operator simply negates an operand. It is
very useful for 'toggling' Boolean variables.

 The And operator returns a True if both operands
are True. Else, it returns a False.

 The Or operator returns a True if either of its
operands is True, else it returns a False.

 Logical operators follow arithmetic operators in
precedence.

Introduction to Procedures
You can simplify programming tasks by breaking programs
into smaller logical components. These components —
called procedures — can then become building blocks that
let you enhance and extend Visual Basic.
Procedures are useful for condensing repeated or shared
tasks, such as frequently used calculations, text and control
manipulation, and database operations. There are two major
benefits of programming with procedures:

• Procedures allow you to break your programs into
discrete logical units, each of which you can debug more
easily than an entire program without procedures.
• Procedures used in one program can act as building
blocks for other programs, usually with little or no
modification. There are several types of procedures used in
Visual Basic:
• Sub procedures do not return a value.
• Function procedures return a value.
• Property procedures can return and assign values, and
set references to objects.

 The simplest statement is the assignment statement. It consists of a
variable name, followed by the assignment operator (=), followed by
some sort of expression.

Examples:

StartTime = Now

Explorer. Caption = "Captain Spaulding"
BitCount = ByteCount * 8
Energy = Mass * LIGHTSPEED ^ 2
NetWorth = Assets - Liabilities

The assignment statement stores information.

 Statements normally take up a single line with no terminator.

Statements can be stacked by using a colon (:) to separate them.

Example: StartTime = Now : EndTime = StartTime + 10

Be careful stacking statements, especially with If/End If structures (we'll learn
about these soon). You may not get the response you desire.

 If a statement is very long, it may be continued to the next line using

the continuation character, an underscore (_).

Example: Month = Log (Final * IntRate / Deposit +1) _
 / Log(1 + IntRate)

 Comment statements begin with the keyword Rem or a single quote (‘).

For example:

 Rem This is a remark
 ‘This is also a remark
 x = 2 * y ‘ another way to write a remark or comment

You as a programmer, should decide how much to comment your code.
Consider such factors as reuse, your audience, and the legacy of your code.

Visual Basic Operators

The simplest operators carry out arithmetic operations. These operators in their
order of precedence are:

Operators Operation
^ Exponentiation
*/ Multiplication and Division
\ Integer division (truncates decimal portion)
Mod Modulus
+ - Addition and Subtraction

 Parentheses around expressions clan change precedence.
 To concatenate two strings, use the & symbol or the + symbol:

SARVA EDUCATION (SITED) (Running- An I.T & Skill Advancement Training Programme) - 13 -

Visit us at: www.sarvaindia.com Licensed by Govt. of India ISO 9001:2015 Certified

All event procedures use the same general syntax.

Syntax for a control event Syntax for a form event
Private Sub controlname_eventname (arguments)
statements
End Sub Private Sub Form_evenfname (arguments)
statements
End Sub
 Although you can write event procedures from scratch, it's easier to
use the code procedures provided by Visual Basic, which
automatically include the correct procedure names.
You can select a template in the Code Editor window by selecting an
object from the Object box and then selecting a procedure from the
Procedure box. It's also a good idea to set the Name property of your
controls before you start writing event procedures for them. !f you
change the name of a control after attaching a procedure to it, you
must also change the name of the procedure to match the new name of
the control. Otherwise, Visual Basic won't be able to match the control
to the procedure. When a procedure name does not match a control
name, it becomes a general procedure.

Function Procedures

See also:
Visual Basic includes built-in, or intrinsic functions, like Sqr, Cos or
Chr. In addition, you can use the Function statement to write your own
Function procedures. The syntax for a Function procedure is:

[Private|Public][Static]Function procedurename (arrangements)
[As type]
statements
End Function

Like a Sub procedure, a Function procedure is a separate procedure
that can take arguments, perform a series of statements, and change the
value of its arguments. Unlike a Sub procedure, a Function procedure
can return a value to the calling procedure. There are three differences
between Sub and Function procedures:
• Generally, you call a function by including the function procedure
name and arguments on the right side of a larger statement or
expression (returnvalue function()).
• Function procedures have data types, just as variables do. This
determines the type of the return value. (In the absence of an As
clause, the type is the default Variant type.)
• You return a value by assigning it to the procedurename itself.
When the Function procedure returns a value, this value can then
become part of a larger expression.
 For example, you could write a function that calculates the third
side, or hypotenuse, of a right triangle, given the values for the other
two sides:

Function Hypotenuse (A As Integer, B As Integer)
As String

 Hypotenuse = Sqr(A ^ 2 + B ^ 2)
 End Function

You call a Function procedure the same way you call any of the built-
in functions in Visual Basic:

Labell.Caption = Hypotenuse (CInt (Text1.Text)
CInt (Text2.Text))
strX = Hypotenuse (Width, Height)

Sub Procedures

A Sub procedure is a block of code that is executed in response to an
event. By breaking the code in a module into Sub procedures, it
becomes much easier to find or modify the code in your application.
The syntax for a Sub procedure is:

[Private | Public] [Static] Sub procedurename (arguments)
statements.
End Sub

Each time the procedure is called, the statements between Sub and
End Sub are executed. Sub procedures can be placed in standard
modules, class modules, and form modules. Sub procedures are by
default Public in all modules, which means they can be called from
anywhere in the application.

The arguments a procedure are like a variable declaration, declaring
values that are passed in from the calling procedure.
In Visual Basic, it's useful to distinguish between two types of Sub
procedures, general procedures and event procedures.

General Procedures

A general procedure tells the application how to perform a specific
task. Once a general procedure is defined, it must be specifically
invoked by the application. By contrast, an event procedure remains
idle until called upon to respond to events caused by the user or trig-
gered by the system.

Why create general procedures? One reason is that several different
event procedures might need the same actions performed. A good
programming strategy is to put common statements in a separate
procedure (a general procedure) and have your event procedures call
it. This eliminates the need to duplicate code and also makes the
application easier to maintain. For example, the VCR sample
application uses a general procedure called by the click events for
several different scroll buttons.

Event Procedures

\K/hen an object in Visual Basic recognizes that an event has
occurred; it automatically invokes the event procedure using the
name corresponding to the event. Because the name establishes an
association between the object and the code, event procedures are
said to be attached to forms and controls.

• An event procedure for a control combines the control's actual

name (specified in the Name property), an underscore (_), and the
event name. For instance, if you want a command button named
cmdPlay to invoke an event procedure when it is clicked, use the
procedure cmdPlay_Click.

• An event procedure for a form combines the word "Form," an
underscore, and the event name. If you want a form to invoke an
event procedure when it is clicked, use the procedure
Form_Click. (Like controls, forms do have unique names, but
they are not used in the names of event procedures.) If you are
using the MDI form, the event procedure combines the word
"MDIForm," an underscore, and the event name, as in
MDIForm_Load.

SARVA EDUCATION (SITED) (Running- An I.T & Skill Advancement Training Programme) - 14 -

Visit us at: www.sarvaindia.com Licensed by Govt. of India ISO 9001:2015 Certified

Calling Function Procedures

Usually, you call a function procedure you've written yourself the
same way you call an intrinsic Visual Basic function like Abs; that is,
by using its name in an expression:
` All of the following statements would call a function
` named ToDec.
Print .10 * ToDec
 X =- ToDec
If ToDec = 10 Then Debug. Print "Out of Range"
X = AnotherFunction(10 * ToDec)

It's also possible to call a function just like you would call a Sub
procedure. The following statements both call the same function:

Call Year (Now)
Year Now

When you call a function this way, Visual Basic throws away the
return value.

Calling Procedures in Other Modules

Public procedures in other modules can be called from anywhere in the
project. You might need to specify the module that contains the
procedure you're calling. The techniques for doing this vary,
depending on whether the procedure is located in a form, class, or
standard module.

Procedures in Forms

All calls from outside the form module must point to the form module
containing the procedure. If a procedure named SomeSub is in a form
module called Form1, then you can call the procedure in Form1 by
using this statement:

 Call Form1. SomeSub (arguments)

Procedures in Class Modules
Like calling a procedure in a form, calling a procedure in a class
module requires that the call to the procedure be qualified with a
variable that points to an instance of the class. For example,
DemoClass is an instance of a class named Class1:

 Dim DemoClass. as New Class1
 DemoClass.SomeSub

However, unlike a form, the class name cannot be used as the qualifier
when referencing an instance of the class. The instance of the class
must be first be declared as an object variables (in this case,
DemoClass) and referenced by the variable name.
For More Information: You can find details on object variables and
class modules in "Programming with Objects."

Procedures in Standard Modules

If a procedure name is unique, you don't need to include the module
name in the call. A call from inside or outside the module will refer to
that unique procedure. A procedure is unique if it-appears only in one
place. If two or more modules contain a procedure with the same
name, you may need to qualify it with the module name. A call to a
common procedure from the same module runs the procedure in that

Working with Procedures

To create a new general procedure

• Type a procedure heading in the Code window and press ENTER.

The procedure heading can be as simple as Sub or Function
followed by a name. For example, you can enter either of the
following:

Sub UpdateForm ()
Function GetCoord ()

Visual Basic responds by completing the template for the new
procedure.

Selecting Existing Procedures

To view a procedure in the current module

• To view an existing general procedure, select "(General)" from

the Object box in the Code window, and then select the
procedure in the Procedure box.

-or-

To view an event procedure, select the appropriate object from
the Object box in the Code window, and then select the event in
the Procedure box.

To view a procedure in another module

 From the View menu, choose Object Browser.
 Select the project from the Project/Library box.
 Select the module from the Classes list, and the procedure

from the Members of list.
 Choose View Definition.

Calling Procedures

The techniques for calling procedures vary, depending on the type of
procedure, where it's located, and how it's used in your application.
The following sections describe how to call Sub and Function
procedures.

Calling Sub Procedures

A Sub procedure differs from a Function procedure in that a Sub
procedure cannot be called by using its name within an expression. A
call to a Sub is a stand-alone statement. Also, a Sub does not return a
value in its name as does a function. However, like a Function, a Sub
can modify the values of any variables passed to it.
There are two ways to call a Sub procedure:

 ` Both of these statements Call a Sub named MyProc.

Call MyProc (FirstArgurnent, SecondArgurnent)
MyProc FirstArgument, SecondArgurrient

Note that when you use the Call syntax, arguments must be enclosed
in parentheses. If you omit the Call keyword, you must also omit the
parentheses around the arguments.

SARVA EDUCATION (SITED) (Running- An I.T & Skill Advancement Training Programme) - 15 -

Visit us at: www.sarvaindia.com Licensed by Govt. of India ISO 9001:2015 Certified

module. For example, with a procedure named CommonName in Module1 and Module2, a call to CommonName from Module2 will run the
CommonName procedure in Module2, not the CommonName procedure in Module1.
A call to a common procedure name from another module must specify the intended module. For example, if you want to call the CommonName
procedure in Module2 from Module1, use:

Module2.CommonName(arguments)

Passing Arguments to Procedures
See Also:
Usually the code in a procedure needs some information about the state of the program to do its job. This information consists of variables passed
to the procedure when it is called when a variable is passed to a procedure, it is called an argument.

Argument Data Types

The arguments for procedures you write have the Variant data type by default. However, yea can declare other data types for arguments. For
example, the following function accepts a string and an integer:

Function WhatsForLunch (WeekDay As String, Hour
As Integer) As String
 ` Returns a lunch menu based on the day and time.
 If WeekDay = "Friday" then
 WhatsForLunch = "Fish"
 Else
 WhatsForLunch = "Chicken"
 End If
 If Hour > 4 Then WhatsForLunch = "Too late"
End Function

Passing Arguments By Value

Only a copy of a variable is passed when an argument is passed by value. If the procedure changes the value, the change affects only the copy and
not the variable itself. Use the ByVal keyword to indicate an argument passed by value. For example:

Sub PostAccounts (ByVal intAcctNum as Integer)
.
. Place statements here.
.
End Sub

This is especially useful if your procedures have several optional arguments that you do not always need to specify.

Determining Support for Named Arguments

To determine which functions, statements, and methods support named arguments, use the AutoQuicklnfo feature in the Code window, check
the Object Browser, or see the Language Reference. Consider the following when working with named arguments:
• Named arguments are not supported by methods on objects in the Visual Basic (VB) object library. They are supported by all language

keywords in the Visual Basic for applications (VBA) object library.
• in syntax, named arguments are shown as bold and italic. All other arguments are shown in italic only.

Important: You cannot use named arguments to avoid entering required arguments. You can omit only the optional arguments. For Visual Basic
(VB) and Visual Basic for applications (VBA) object libraries, the Object Browser encloses optional arguments with square brackets [].

SARVA EDUCATION (SITED) (Running- An I.T & Skill Advancement Training Programme) - 16 -

Visit us at: www.sarvaindia.com Licensed by Govt. of India ISO 9001:2015 Certified

CHAPTER – 4

VISUAL BASIC FUNCTIONS

• Many times, you need to extract substrings from string
variables. There are three functions that help with this task. In
the Left function, you can extract a specified number of 'left
most' characters. This example extracts the 3 'left most'
characters from the string variable:

MyString = "Visual Basic is fun!"
LeftString = Left(MyString, 3)

The LeftString variable is equal to "Vis"

• With the Right function, you can extract a specified number
of 'right most1 characters. This example extracts the 6 'right
most' characters from the string variable:

MyString = "Visual Basic is fun!"
RightString = Right (MyString, 6)

The RightString variable is equal to "s fun!"
 And, the Mid function lets extract a specified number of

characters from anywhere in the string (you specify the
string, the starting position and the number of characters
to extract). This example extracts 6 characters from the
string variable, starting at character 3:

MyString = "Visual Basic is fun!”

MidString = Mid(MyString, 3, 6)

The MidString variable is equal to "sual B"

• To determine how many characters are in a string variable,
use the Len function. Or, for our example:

MyString = "Visual Basic is fun!"
LenString = Len(MyString)

LenString will have a value of 20.

• To find a substring within a string variable, use the Instr
function. Three arguments are used: starting position in Stringl
(optional), String 1 (the variable), and String2 (the substring to
find). The function will return the location of the first character
of the substring (it will return 0 if the substring is not found).
For our example:

MyString = "Visual Basic is fun!"

 Location = Instr(3, MyString, "sic")

This says find the substring "sic" in MyString, starting at
character 3 (if this argument is omitted, 1. is assumed). The
returned Location will have a value of 10.
• Another useful pair of functions are the Asc and Chr
functions. These work with individual characters. Every
'typeable' character has a numeric representation called an
ASCII ("askey") code. The Asc function returns the ASCII
code for an individual character. For example:

Visual Basic offers a rich assortment of built-in functions. The on-line help
utility will give you information on any or all of these functions and their
use. Some examples are:

String Functions
• Visual Basic offers a powerful set of functions to work with string type

variables, which are very important in Visual Basic. The Caption
property of the label control and the Text property of the text box
control are string types. You will find you are constantly converting
string types to numeric data types to do some math and then converting
back to display the information.

• To convert a string type to a numeric value, use the Val function. As an
example, to convert the Text property of a text box control named
txtExample to a number, use:

Val (txtExample.Text)

This result can then be used with the various mathematical operators.
• There are two ways to convert a numeric variable to a string. The Str

function does the conversion with no regard for how the result is
displayed. This bit of code can be used to display the numeric variable
MyNumber in a text box control:

MyNumber = 3.14159
 txtExample.Text = Str (MyNumber)

If you need to control the number of decimal points (or other display
features), the Format function is used. This function has two arguments, the
first is the number, the Second a string specifying how to display the number
(use on-line help to see how these display specifies work). As an example, to
display MyNumber with no more than two decimal points, use:

MyNumber = 3.14159
txtExample.Text = Format (MyNumber, "#.##")

In the display string ("#.##"), the pound signs represent place holders.

SARVA EDUCATION (SITED) (Running- An I.T & Skill Advancement Training Programme) - 17 -

Visit us at: www.sarvaindia.com Licensed by Govt. of India ISO 9001:2015 Certified

2. Place 4 label boxes, 4 text boxes, and 2 command buttons on the
form. It should look something like this:

3. Set the properties of the form and each object.

Now your form should look like this-

 Asc ("A")

returns the ASCII code for the upper case A (65, by the way).
The Chr function returns the character represented by an ASCII
code. For example:

 Chr (48)
returns the character represented by an ASCII value of 48 (a "1").
The Asc and Chr functions are used often in determining what a user
is typing.

Rnd (Random Number) Function

• In writing games and learning software, we use the Rnd function

to introduce random-ness. This insures different results each
time you try a program. The Visual Basic function Rnd returns
a single precision, random number between 0 and 1 (actually
greater than or equal to 0 and less than 1). To produce random
integers (I) between Imin and Imax, use the formula:

 I = Int((Imax - Imin +1) * Rnd) + Imin

• The random number generator in Visual Basic must be seeded. A

Seed value initializes the generator. The Randomize statement
is used to do this:

 Randomize Seed

If you use the same Seed each time you run your application,
the same sequence of random numbers will be generated. To
insure you get different numbers every time you use your
application (preferred for games), use the Randomize statement
without a seed (it will be seeded using the built-in Timer
function)

 Randomize

Place the above statement in the Form_Load event procedure.

• Examples:

To roll a six-sided die, the number of spots would be computed
using:
NumberSpots = Int(6 * Rnd) + 1
To randomly choose a number between 100 and 200, use:
Number = Int(101 * Rnd) + 100

Example 2-1

Saving Account

1. Start a new project. The idea of this project is to determine how
much you save by making monthly deposits into a savings
account. For those interested, the mathematical formula used is:

F = D [(1+I)M -1)/I

where

F - Final amount
D - Monthly deposit amount
I - Monthly interest rate
M - Number of months

SARVA EDUCATION (SITED) (Running- An I.T & Skill Advancement Training Programme) - 18 -

Visit us at: www.sarvaindia.com Licensed by Govt. of India ISO 9001:2015 Certified

• It is strongly suggested that the symbolic constants be used instead
of the numeric values, when possible. You should agree that vbBlue
means more than the value OxFFOOOO. When selecting the
background color in the above example, You do not need to do any
thing to define the symbolic constants - they are built into Visual
Basic.

Defining Your Own Constants

• You can also define your own constants for use in Visual Basic.
The format for defining a constant named PI with a value 3.14159 is:

Const P1 = 3.14159

• User-defined constants: should be written in all upper case letters
to distinguish them from variables. The scope of constants is
established the same way a variables' scope is. That is, if defined
within a procedure, they are local to the procedure. If defined in the
general declarations of a form, they are global to the form. To make
constants global to an application, use the format:

Global Const PI = 3.14159

within the general declarations area of a module.

Visual Basic Branching - if Statements

• Branching: statements are used to cause certain actions within a
program if a certain condition is met.

• The simplest is the single line If/Then statement:

If Balance - Check < 0 Then Print "You are overdrawn"
Here, if and only if Balance - Check is less than zero, the statement
"You are overdrawn" is printed.

 You can also have If/Then/End If blocks to allow multiple
statements.

 If Balance - Check < 0 Then
Print "You are overdrawn"
 Print "Authorities have been notified"
 End If

In this case, if Balance - Check is less than zero, two lines of
information are printed.

Or,

If/Then/Else/End If blocks:

If Balance - Check < 0 Then
 Print "You are overdrawn"
 Print "Authorities have been notified'
Else
 Balance = Balance - Check
End If

Here, the same two lines are printed if you are overdrawn (Balance –
check < 0), but, if you are not overdrawn (Else), your new Balance is
computed. Or, we can add the Elself statement:

4. Declare four variables in the general declarations area of your
form. This makes them available to all the form procedures:

Option Explicit
‘Dim Deposit As String
‘Dim Interest As String
‘Dim Months As String
‘Dim Final As String

The Option Explicit statement forces us to declare all variables.

 5. Attach code to the cmdCalculate command button Click event.

Private Sub cmdCalculate_Click ()
‘Dim IntRate As String
‘Read values from text boxes
‘Deposit = Val (40,000)
‘Interest = Val (12)
‘IntRate = Interest / 1200
‘Months = Val (3)
 ‘Compute final value and put in text box
Final = Deposit * ((1 + IntRate) ^ Months - 1)/ IntRate)
txtFinal .Text = Format (Final, “# # # # #0.00")
End Sub

This code reads the three input values (monthly deposit, interest rate,
number of months) from the text boxes, converts those string
variables to number using the Val function, converts the yearly
interest percentage to monthly interest (IntRate) computes the final
balance using the provided formula, and puts that result in a text box
(after converting it back to a string variable).

6. Attach code to the cmdExit command button Click event.

Private Sub cmdExit_Click ()
End
End Sub

7. Play with the program. Make sure it works properly. Save the

project (it is saved as Example2-1 in the LearnVB6/VB
Code/Class 2 folder)

Visual Basic Symbolic Constants

• Many times in Visual Basic, functions and objects require data

arguments that affect their operation and return values you want
to read and interpret. These arguments and values are constant
numerical data and difficult to interpret based on just the
numerical value. To make these constants more understandable,
Visual Basic assigns names to the most widely used values -
these are called symbolic constants. Appendix I lists many of
these constants.

• As an example, to set the background color of a form named
frmExample to blue, we could type:

frmExample.BackColor = OxFFOOOO

or, we could use the symbolic constant for the blue color (vbBlue):

frmExample.BackColor = vbBlue

SARVA EDUCATION (SITED) (Running- An I.T & Skill Advancement Training Programme) - 19 -

Visit us at: www.sarvaindia.com Licensed by Govt. of India ISO 9001:2015 Certified

Example 2-2

Savings Account - Key Trapping

1. Note the acceptable ASCII codes are 48 through 57 (numbers),
46 (the decimal point), and 8 (the backspace key). In the code, we
use symbolic constants for the numbers and backspace key.

Such a constant does not exist for the decimal point, so we will
define one with the following line in the general declarations area:

 Const vbKeyDecPt =46

2. Add the following code to the three procedures:

txtDeposit_KeyPress, txtlnterest_KeyPress, and txtjMonths__KeyPress

Private Sub txtDeposit KeyPress (KeyAscii As Integer)
‘Only allow number keys, decimal point, or backspace
 If (KeyAscii >= vbKeyO And KeyAscii <= vbKey9) Or KeyAscii =
vbKeyDecPt Or KeyAscii = vbKeyBack Then
 Exit Sub
 Else
 KeyAscii = 0
 Beep
 End If
 End Sub
 Private Sub txtlnterest KeyPress (KeyAscii As Integer)
 ‘Only allow number keys, decimal point, or backspace
 If (KeyAscii >= vbKeyO And KeyAscii <= vbKey9) Or KeyAscii =
 vbKeyDecPt Or KeyAscii = vbKeyBack Then
Exit Sub
Else
 KeyAscii = 0
 Beep
End If
End Sub
Private Sub txtMonths_KeyPress (KeyAscii As Integer)
` only allow number keys, decimal point, or backspace
If (KeyAscii >= vbKeyO And KeyAscii <= vbKey9) Or KeyAscii =
vbKeyDecPt Or KeyAscii = vbKeyBack Then
 Exit Sub
Else
 KeyAscii = 0
 Beep
End If
End Sub

(In the If statements above, note the word processor causes a lime
break where there really shouldn't be one. That is, there is no line
break between the words Or KeyAscii and = vbKeyDecPt.

One appears due to page margins. In all code in these notes, always
look for such things.)

3. Rerun the application and test the key trapping performance.
Save the application (Ex-ample2-2 in the LearnVB6/VB
Code/Class 2 folder)
Select Case - Another Way to Branch

• In addition to If/Then/Else type statements, the Select Case
format can be used when there are multiple selection possibilities.

• Say we've written this code using the If statement:

If Balance - Check < 0 Then
 Print "You are overdrawn"
 Print "Authorities have been notified"
Elself Balance - Check - 0 Then
 Print "Whew! You barely made it"
 Balance = 0
Else
 Balance = Balance - Check
End If
Now, one more condition is added. If your Balance equals the Check
amount (ESself Balance - Check = 0), a different message appears.

• In using branching statements, make sure you consider all viable
possibilities in the If/ Else/End If structure. Also, be aware that each
If and Elself in a block is tested sequentially. The first time an If test
is met, the code associated with that condition is executed and the If
block is exited. If a later condition is also True, it will never be
considered.

Key Trapping

• Note in the previous example, there is nothing to prevent the user

from typing in meaningless characters (for example, letters) into the
text boxes expecting numerical data. Whenever getting input from a
user, we want to limit the available keys they can press. The process
of intercepting unacceptable keystrokes is key trapping.

• Key trapping is done in the KeyPress event procedure of a control.

Such a procedure has the form (for a text box named txtText) :

Private Sub txtText_KeyPress (KeyAscii as Integer)
 .
 .
 .
End Sub

What happens in this procedure is that every time a key is pressed in the
corresponding text box, the ASCII code for the pressed key is passed to
this procedure in the argument. list (i.e. KeyAscii), If KeyAscii is an
acceptable value, we would do nothing. However, if KeyAscii is not
acceptable, we would set KeyAscii equal to zero and exit the procedure.
Doing this has the same result of not pressing a key at all. ASCII
values for all keys are available via the on-line help in Visual Basic.
And some keys are also defined by symbolic constants. Where possible,
we will use symbolic constants; else, we will use the ASCII values.
As an example, say we have a text box (named txtExample) and we
only want to be able to enter upper case letters (ASCII codes 65 through
90, or, correspondingly, symbolic constants vbKeyA through vbKeyZ).
The key press procedure would look like (the Beep causes an audible
tone if an incorrect key is pressed) :

Private Sub txtExample_KeyPress (KeyAscii as Integer)
If KeyAscii >= vbKeyA And KeyAscii <= vbKeyZ Then
 Exit Sub
Else
 KeyAscii = 0
 Beep
End If
End Sub

In key trapping, it's advisable to always allow the backspace key
(ASCII cod&8; symbolic constant vbKeyBack) to pass through the key
press event. Else, you will not be able to edit the text box properly.

SARVA EDUCATION (SITED) (Running- An I.T & Skill Advancement Training Programme) - 20 -

Visit us at: www.sarvaindia.com Licensed by Govt. of India ISO 9001:2015 Certified

If Age = 5 Then
 Category = "Five Year Old"
 Elself Age >= 13 and Age <= 19 Then
 Category = "Teenager"
 Elself (Age >= 20 and Age <= 35) Or Age = 50 Or (Age >= 60 and
 Age <= 65) Then
 Category = "Special Adult."
 Elself Age > 65 Then
 Category = "Senior Citizen"
 Else
 Category = "Everyone Else"
 End If

The corresponding code with Select Case would be:

 Select Case Age
 Case 5
 Category = "Five Year Old"
 Case 13 To 19
 Category = "Teenager"
 Case 20 To 35, 50, 60 To 65
 Category = "Special Adult"
 Case Is > 65
 Category = "Senior Citizen"
 Case Else
 Category = "Everyone Else"
End Select

Notice there are several formats for the Case statement. Consult on-line help for discussions of these formats.

The GoTo Statement

• Another branching statement, and perhaps the most hated statement in programming, is the GoTo statement. However, we will need this to do

Run-Time error trapping. The format is GoTo Label, where Label is a labeled line. Labeled lines are formed by typing the Label followed
by a colon.

• GoTo Example:
 Line10:
 .

 .
 GoTo Line10

When the code reaches the GoTo statement, program control transfers to the line labeled Line10.

.

.

SARVA EDUCATION (SITED) (Running- An I.T & Skill Advancement Training Programme) - 21 -

Visit us at: www.sarvaindia.com Licensed by Govt. of India ISO 9001:2015 Certified

CHAPTER – 5

VISUAL BASIC LOOPING

• Do Until/Loop Example:

 Counter = 1
 Do Until Counter > 1000
 Debug.Print Counter
 Counter = Counter + 1
 Loop

This loop repeats Until the Counter variable exceeds 1000. Note a
Do Until/Loop structure will not be entered if the Until condition is
already True on the first encounter.

• Do/Loop While
Example:

 Sum = 1
 Do
 Debug.Print Sum
 Sum = Sum + 3
 Loop While Sum <= 50

This loop repeats While the Variable Sum is less than or equal to
50. Note, since the While check is at the end of the loop, a Do/Loop
While structure is always executed at least once.

• Do/Loop Until
Example:

 Sum = 1
 Do
 Debug. Print Sum
 Sum = Sum + 3
 Loop Until Sum > 50

This loop repeats Until Sum is greater than 50. And, like the
previous example, a Do/ Loop Until structure always executes at
least once.

 Looping is done with the Do/Loop format. Loops are used for
operations are to be repeated some number of times.

 Make sure you can always get out of a loop! Infinite loops are
never nice. If you get into one, try Ctrl+Break. That sometimes
works - other times the only way out is rebooting your machine!

 The statement Exit Do will get you out of a loop and transfer
program control to the statement following the Loop statement.

Visual Basic Counting

• Counting is accomplished using the For/Next loop.

Example:

For 1 = 1 to 50 Step 2
 A = I * 2
 Debug. Print A
 Next 1

In this example, the variable I initializes at 1 and, with each iteration of
the For/Next loop, is incremented by 2 (Step). This looping continues
until I becomes greater than or equal to its final value (50). If Step is
not included, the default value is 1. Negative values of Step are
allowed.

 You may exit a For/Next loop using an Exit For statement. This

will transfer program control to the statement following the Next
statement.

Example 2-3

Saving Account - Decisions

1. Here, we modify the Savings Account project to allow entering any

three values and computing the fourth. First, add a third command
button that will clear all of the text boxes. Assign the following
properties:

 Commands3:
 Caption Clear &Boxes
 Name cmdClear

 The form should look something like this when you're done:

• Do While/Loop Example:

Counter = 1
Do While Counter O 1000
 Debug. Print Counter
Counter = Counter + 1
Loop
This loop repeats as long as (While) the variable Counter is less than or
equal to 1000. Note a Do While/Loop structure will not execute even
once if the While condition is violated (False) the first time through.
Also note the Debug.Print statement. What this does is print the value
Counter in the Visual Basic Debug window We'll learn more about this
window later in this course.

SARVA EDUCATION (SITED) (Running- An I.T & Skill Advancement Training Programme) - 22 -

Visit us at: www.sarvaindia.com Licensed by Govt. of India ISO 9001:2015 Certified

In this code, we first read the text information
from all four text boxes and based on which one
is blank (the Trim function strips off leading and
trailing blanks), compute the missing information
and display it in the corresponding text box.
Solving for missing Deposit, Months, or Final
information is a straightforward manipulation of
the equation given in Example 2-2.

If the Interest value is missing for the
mathematically-inclined, we have to solve an
Mth-order polynomial using something called
Newton-Raphson iteration - a good example of
using a Do loop. If you're not mathematically
inclined, you should see that finding the Interest
value is straightforward.

5. Test and save your application (Example2-3
in the LearnVB6/VB Code/Class 2 Folder) Go
home and relax.

2. Code the cmdClear button Click event

Private Sub cmdClear_Click ()
`Blank out the text boxes

txtDeposit.Text = ” ”
txtInterest. Text = “ "
txtMonths. Text = “ “
txtFinal. Text = " “
End Sub

This code simply blanks out the four text boxes when the Clear button is clicked.

3. Code the KeyPress event for the txtFinal object:

 Private Sub txtFinal_KeyPress (KeyAscii As Integer)

`Only allow number keys, decimal point, or backspace
If (KeyAscii >= vbKey0 And KeyAscii <= vbKey9) Or KeyAscii =
vbKeyDecPt Or KeyAscii = vbKeyBack Then
 Exit Sub
Else
 KeyAscii = 0
 Beep

 End If
 End Sub
 We need this code because we can now enter information into the Final Value text box.

4. The modified code for the Click event of the cmdCalculate button is:

Private Sub cmdCalculate_Click ()
Dim IntRate As String
Dim IntNew As String
Dim Fcn As Single, FcnD As String
`Read the four text boxes
Deposit = Val(txtDeposit.Text)
Interest = Val (txtlnterest.Text)
IntRate = Interest / 1200
Months = Val (txtMonths . Text)
Final = Val (txtFinal . Text)
`Determine which box is blank

 `Compute that missing value and put in text box
 If Trim (txtDeposit.Text) = " “ Then
 `Deposit missing
 Deposit = Final / (((1 + IntRate) ^ Months - 1) / IntRate
txtDeposit. Text = Format (Deposit, "#####0.00")
Elself Trim (txtInterest . Text) = “ “ Then
'Interest missing - requires iterative solution
 IntNew = (Final / (0.5* Months * Deposit) - 1) / Months
 Do
 IntRate = Int New
 Fcn = (1 + InRate) ^ Months - Final * IntRate / Deposit - 1
 Fcnd = Months * (1 + InRate) ^ (Months - 1) / Deposit
 IntNew = IntRate - Fcn / Fcnd
Loop Until Abs(IntNew - IntRate) < 0.00001 / 12
Interest = IntNew * 1200
textInterest. Text = Format (Interest, “##0.00")
Elself Trim (txtMonths.Text) = " " Then
`Months missing
 Months = Log (Final * IntRate / Deposit + 1) / Log (1 + IntRate)
 txtMonths.Text = Format(Months, "###.0")
Elself Trim (txtFinal. Text) = "" Then
`Final value missing
 Final = Deposit * ((1 + IntRate) ^ Months - 1) / IntRate
 txtFinal.Text = Format(Final, "#####0.00")
End If
End Sub

SARVA EDUCATION (SITED) (Running- An I.T & Skill Advancement Training Programme) - 23 -

Visit us at: www.sarvaindia.com Licensed by Govt. of India ISO 9001:2015 Certified

CHAPTER – 6

EXPLORING THE VISUAL BASIC TOOLBOX

 The third component of Type specifies which button is default

(i.e. pressing Enter is the same as clicking the default button):

 The fourth and final component of Type specifies the modality:

If the box is Application Modal, the user must respond to the box
before continuing work in the current application. If the box is System
Modal, all applications are suspended until the user responds to the
message box.
 Note for each option in Type, there are numeric values listed and

symbolic constants. Recall, it is strongly suggested that the
symbolic constants be used instead of the numeric values. You
should agree that vbOKOnly means more than the number 0
when selecting the button type.

 The value returned by the function form of the message box is
related to the button clicked:

Message Box Example:
MsgBox "This is an example of a message box", vbOKCancel +
vblnformation, "Message Box Example"

 You've seen message boxes if you've ever used a Windows
application Think of all the examples you've seen. For example,
message boxes are used to ask you it you wish to save a file
before exiting and to warn you if a disk drive is not ready.

Review and Preview

• In this class, we begin a journey where we look at each tool in the

Visual Basic toolbox. We will revisit some tools we already
know and learn a lot of new tools. First, though, we look at an
important Visual Basic functions.

The Message Box

• One of the best functions in Visual Basic is the message box. The

message box displays a message, optional icon, and selected set of
command buttons. The user responds by clicking a button.

• The statement form of the message box returns no value (it simply
displays the box):

 MsgBox Message, Type, Title
 where
 Message Text message to be displayed
 Type Type of message box (discussed in a bit)
 Title Text in title bar of message box

 You have no control over where the message box appears on the
screen

• The function form of the message box returns an integer value

(corresponding to the button clicked by the user). Example of
use (Response is returned value):

 ‘Dim Response as Integer
 ‘Response = MsgBox (Message, Type, Title)

• The Type argument is formed by summing four values

corresponding to the buttons to display, any icon to show, which
button is the default response, and the modality of the message
box.

• The first component of the Type value specifies the buttons to
display:

 The second component of Type specifies the icon to display in
the message box:

SARVA EDUCATION (SITED) (Running- An I.T & Skill Advancement Training Programme) - 24 -

Visit us at: www.sarvaindia.com Licensed by Govt. of India ISO 9001:2015 Certified

Command Button Events:

 Click Event triggered when button is selected either by clicking
on it or by pressing the access key.

Label Boxes

A label box is a control you use to display text that a user can't edit
directly.

We've seen, though, in previous examples, that the text of a label box
can be changed at runtime in response to events.

Label Properties:

Label Events:

 Click Event triggered when user clicks on a label
 DblClick Event triggered when user double-clicks on a label.

Text Boxes

A text box is used to display information entered at design time, by a
user at run-time, or assigned within code. The displayed text may be
edited.

Text Box Properties:

Object Methods

• In previous work, we have seen that each object (control) has

properties and events associated with it. A third concept
associated with objects is the method A method is a procedure
or function that imparts some action to an object.

• As we move through the toolbox, when appropriate, we'll
discuss object methods. Methods are always enacted at run-time
in code. The format for invoking a method is:
ObjectName.Method {optional arguments}

Note this is another use of the dot notation.

The Form Object

 The Form is where the user interface is drawn. It is central to

the development of Visual Basic applications.

Form Properties:

Form Events:

Form Methods:

Cls Clears all graphics and text from form. Does not
clear any objects.

Print Prints text string on the form.

Examples

frmExample.CIs ` clears the form
frmExample.Print "This will print on the form"

Command Buttons

 We've seen the command button before. It is probably the

most widely used control. It is used to begin, interrupt, or end a
particular process.

Command Button Properties:

SARVA EDUCATION (SITED) (Running- An I.T & Skill Advancement Training Programme) - 25 -

Visit us at: www.sarvaindia.com Licensed by Govt. of India ISO 9001:2015 Certified

Text Box Events:

Change Triggered every time the Text property changes.
LostFocus Triggered when the user leaves the text box. This is a good place to examine the contents of
 text box after editing.

KeyPress Triggered whenever a key is pressed. Used for key trapping, as seen in last class.

Text Box Methods:

SetFocus Places the cursor in a specified text box.

 Example: txtExample.SetFocus' moves cursor to txtExample

• Use of the text box control should be minimized if possible. Whenever you give a user the option to type something, it makes your job as a
programmer more difficult. You need to validate the information they type to make sure it will work with your code (recall the Savings Account
example in the last class, where we need key trapping to insure only numbers were being entered). There are many controls in Visual Basic that are
'point and click,' that is, the user can make a choice simply by clicking with the mouse We'll look at such controls through the course. Whenever
these 'point and click' controls can be used to replace a text box, do it!

Example 3-1

Password Validation

1. Start a new project. The idea of this project is to ask the user to input a password. If correct, a message box appears to validate the user. If
incorrect, other options are provided.

2. Place a two command buttons, a label box, and a text box on your form so it looks something like this:

 `This procedure checks the input password
Dim Response As Integer
If txtPassword.Text = txtPassword.Taq Then
`lf correct, display message box
 MsgBox "You've passed security!", vbOKOnly + vbExclamation,
 "Access Granted"
Else
 `lf incorrect, give option to try again
 Response = MsgBox ("Incorrect password", vbRetryCancel + vbCritical, "Access Denied")
 If Response = vbRetry Then

 txtPassword.SelStart = 0
 txtPassword.SelLength = Len(txtPassword.Text)
 Else

 End
 End If
End If
txtPassword.SetFocus
End Sub

SARVA EDUCATION (SITED) (Running- An I.T & Skill Advancement Training Programme) - 26 -

Visit us at: www.sarvaindia.com Licensed by Govt. of India ISO 9001:2015 Certified

• Once a control array has been created and named, elements of the
array are referred to by their name and index. For example, to set the
Caption property of element 6 of a label box array named IblExample,
we would use:
 lblExample(6).Caption = "This is an example"

We'll use control arrays in the next example. Frames

Frames

• We've seen that both option buttons and check boxes work as a group.
Frames provide a way of grouping related controls on a form. And, in the
case of option buttons, frames affect how such buttons operate.

• To group controls in a frame, you first draw the frame. Then, the
associated controls must be drawn in the frame. This allows you to move
the frame and controls together. And, once a control is drawn within a
frame, it can be copied and pasted to create a control array within that
frame. To do this, first click on the object you want to copy.

Copy the object. Then, click on the frame. Paste the object. You will be
asked if you want to create a control array. Answer Yes.

 Drawing the controls outside the frame and dragging them in,

copying them into a frame, or drawing the frame around existing
controls will not result in a proper grouping. It is perfectly
acceptable to draw frames within other frames.

 As mentioned, frames affect how option buttons work. Option

buttons within a frame work as a group, independently of option
buttons in other frames. Option buttons on the form, and not in
frames, work as another independent group. That is, the form is
itself a frame by default. We'll see this in the next example.

 It is important to note that an independent group of option buttons is

defined by physical location within frames, not according to naming
convention. That is, a control array of option buttons does not work
as an independent group just because it is a control array. It would
only work as a group if it were the only group of option buttons
within a frame or on the form. So, remember physical location and
physical location only, dictates independent operation of option
button groups.

Frames Properties:

 Caption Title information at top of frame.
 Font Sets font type, style, size.

Example 3-2

Pizza Order

1. Start a new project. We'll build a form where a pizza order can be
entered by simply clicking on check boxes and option buttons.

2. Draw three frames. In the first, draw three option buttons, in the
second, draw two option buttons, and in the third, draw six check boxes.
Draw two option buttons on the form. Add two command buttons. Make
things look something like this.

This code checks the input password to see if it matches the stored
value. H so, it prints an acceptance message, if incorrect, it displays
a message box to that effect and asks the user if they want to try
again If Yes (Retry), another try is granted if No (Cancel), the
program is ended. Notice the use of ScILength and SelStart to
highlight an incorrect entry. This allows the user to type right over
the incorrect response.

3. Attach the following code to the Form_Activate event.

Private Sub Form _Activate ()
txtPassword.SetFocus
End Sub

4. Attach the following code to the cmdExit_ Click event.

Private Sub cmdExit_Click ()
End
End Sub

5. Try running the program. Try both options: input correct
password (note it is case sensitive) and input incorrect
password. Save your project (saved as Exampte3-1 in the
LearnVB6/VB6 Code/Class 3 folder).
If you have time, define a constant, TRYMAX = 3, and modify
the code to allow the user to have just TRYMAX attempts to
get the correct password. After the final try, inform the user
you are logging him/her off. You'll also need a variable that
counts the number of tries (make it a Static variable).

Control Arrays
• With some controls, it is very useful to define control arrays - it

depends on the application. For example, option buttons are
almost always grouped in control arrays.

• Control arrays are a convenient way to handle groups of controls
that perform a similar function. All of the events available to
the single control are still available to the array of controls, the
only difference being an argument indicating the index of the
selected array element is passed to the event. Hence, instead of
writing individual procedures for each control (i.e. not using
control arrays), you only have to write one procedure for each
array.

• Another advantage to control arrays is that you can add or delete
array elements at runtime. You cannot do that with controls
(objects) not in arrays. Refer to the Load and Unload
statements in on-line help for the proper way to add and delete
control array elements at run-time.

• Two ways to create a control array:

1. Create an individual control and set desired properties. Copy the

control using the editor, then paste it on the form. Visual Basic
will pop-up a dialog box that will ask you if you wish to create
a control array. Respond yes and the array is created.

2. Create all the controls you wish to have in the array. Assign the

desired control array name to the first control. Then, try to name
the second control with the same name. Visual Basic will
prompt you, asking if you want to create a control array.
Answer yes. Once the array is created, rename all remaining
controls with that name.

SARVA EDUCATION (SITED) (Running- An I.T & Skill Advancement Training Programme) - 27 -

Visit us at: www.sarvaindia.com Licensed by Govt. of India ISO 9001:2015 Certified

4. Declare the following variables in the general declarations area:

Option Explicit
‘Dim' PizzaSize As String
‘Dim PizzaCrust As String
‘Dim PizzaWhere As String

This makes the size, crust, and location variables global to the form.

5. Attach this code to the Form_Load procedure. This initializes the pizza size,
crust, and eating location.

Private Sub Form_ Load()
‘Initialize pizza parameters
‘PizzaSize = "Small"
‘PizzaCrust = "Thin Crust"
‘PizzaWhere = "Eat In"
End Sub

Here, the global variables are initialized to their default values, corresponding to
the default option buttons.

6. Attach this code to the three option button array Click events. Note the use of
the index variable:

Private Sub optSize_Click (Index As Integer)
‘Read pizza size
‘PizzaSize = optSize (Index) .Caption
End Sub

Private Sub optCrust Click(Index As Integer)

‘Read Crust Type
‘PizzaCrust = optCrust(Index).Caption
End Sub

Private Sub optWhere_C1ick (Index As Integer)
‘Read pizza eating location
‘PizzaWhere = optWhere (Index).Caption
End Sub

In each of these routines, when an option button is clicked, the value of the
corresponding button's caption is loaded into the respective variable.
7. Attach this code to the cmdBuild_Click event.

Private Sub cmdBuild_Click ()
‘This procedure builds a message box that displays your pizza type
Dim Message As String
Dim I As Integer
Message = PizzaWhere + vbCr

‘Message = Message + PizzaSize + " Pizza" + vbCr
‘Message = Message + PizzaCrust + vbCr
For I = 0 To 5

‘If chkTop (I) .Value = vbChecked Then Message = Message +
-chkTop(I).Caption + vbCr
 Next 1

 ‘MsgBox Message, vbOKOnly, "Your Pizza"
 End Sub

This code forms the first part of a message for a message box by concatenating
the pizza size, crust type, and eating location (vbCr is a symbolic constant
representing a 'carriage return1 that puts each piece of ordering information on a
separate line). Next, the code cycles through the six topping check boxes and
adds any checked information to the message. The code then displays the pizza
order in a message box

3. Set the properties of the form and each control.

SARVA EDUCATION (SITED) (Running- An I.T & Skill Advancement Training Programme) - 28 -

Visit us at: www.sarvaindia.com Licensed by Govt. of India ISO 9001:2015 Certified

• Items in a list box are usually initialized in a Form_Load
procedure. It's always a good idea to Clear a list box before initializing
it.

• You've seen list boxes before. In the standard 'Open File' window,
the Directory box is a list box with MultiSelect equal to zero.

Combo Boxes

• The combo box is similar to the list box. The differences are a
combo box includes a text box on top of a list box and only allows
selection of one item. In some cases, the user can type in an alternate
response.

• Combo Box Properties:

Combo box properties are nearly identical to those of the list box, with
the deletion of the MultiSelect property and the addition of a Style
property.

Example

cboExample.Addltem "This is an added item"
cboExample. Clear
cboExample.RemoveItem 4 ` removes cboExample.List (4)

• You've seen combo boxes before. In the standard 'Open File'
window, the File Name box is a combo box of Style 2, while the Drive
box is a combo box of Style 3.

8. Attach this code to the cmdExit_Click event.
Private Sub cmdExit_Click ()
End
End Sub

9. Get the application working. Notice how the different selection

buttons work in their individual groups. Save your project
(saved as Example3-2 in the LearnVB6/VB Code/ Class 3
folder).

10. If you have time, try these modifications:

A. Add a new program button that resets the order form to the
initial default values. You'll have to reinitialize the three
global variables, reset all check boxes to unchecked, and
reset all three option button groups to their default values.

B. Modify the code so that if no toppings are selected, the
message "Cheese Only" appears on the order form. You'll
need to figure out a way to see if no check boxes were
checked.

List Boxes

• A list box displays a list of items from which the user can select
one or more items. If the number of items exceeds the number that
can be displayed, a scroll bar is automatically added.

 List Box Properties:

• List Box Events:

Click
DbIClick

Event triggered when item in list is clicked
Event triggered when item in list is double-
clicked. Primary way used to process
selection.

• List Box Methods:

Examples

‘ListExample.AddItem “This is an added item”
‘ListExample.Clear
‘ListExampl e. Remove I tern 4 ‘removes IstExample.List (4)

SARVA EDUCATION (SITED) (Running- An I.T & Skill Advancement Training Programme) - 29 -

Visit us at: www.sarvaindia.com Licensed by Govt. of India ISO 9001:2015 Certified

Now, the form should look like this:

1. Attach this code to the Form_Load procedure:

 Private Sub Form_Load ()
 ‘Add city names to list box
‘ListCities.Clear
‘ListCities.
‘ListCities.
‘ListCities.
‘ListCities.
‘ListCities.
‘ListCities.
‘ListCities.
‘ListCities.
‘ListCities.
‘ListCities.
‘ListCities.
‘ListCities.
‘ListCities.
‘ListCities.
‘ListCities.

Addltem "San Diego"
Addltem “Los Angeles"
Addltem "Orange County"
Addltem “Ontario"
Addltem "Bakersfield"
Addltem "Oakland"
Addltem "Sacramento"
Addltem "San Jose"
Addltem "San Francisco"
Addltem "Eureka"
Addltem "Eugene"
Addltem "Portland"
Addltem "Spokane"
AddItem "Seattle”
ListIndex = 0

‘ListCities.
‘Add seat types to first combo box
‘cboSeat.Addltem "Aisle"
‘cboSeat.Addltem "Middle"
‘cboSeat.Addltem "Window"
‘cboSeat.ListIndex = 0

‘Add meal types to second combo box
‘cboMeal.Addltem "Chicken"
‘cboMeal.Addltem "Mystery Meat"
‘cboMeal.AddItem "Kosher"
‘cboMeal.Addltem "Vegetarian"
‘cboMeal.AddItern "Fruit Plate"
‘cboMeal.Text = "No Preference"
End Sub

This code simply initializes the list box and the list box portions of the
two combo boxes.

Example 3-3

Flight Planner

1. Start a new project. In this example, you select a destination
city, a seat location, and a meal preference for airline
passengers.

2. Place a list box, two combo boxes, three label boxes and two
command buttons on the form. The form should appear
similar to this:

1. Set the form and object properties:
 Form1:
 BorderStyle 1-Fixed Single
 Caption Flight Planner
 Name frmFlight

List1:
Name 1stCities
Sorted True

Combo1:
Name cboSeat
Style 2-Dropdown List

Combo2:
Name cboMeal
Style 1-Simple
Text [Blank]

 (After setting properties for this combo box, resize it until it is
large enough to hold 4 to 5 entries.)

Label1:
Caption Destination City

Label2:
Caption Seat Location

Label3:
Caption Meal Preference

Command 1:
Caption &Assign
Name cmdAssign

Command2:
Caption E&xit
Name cmdExit

SARVA EDUCATION (SITED) (Running- An I.T & Skill Advancement Training Programme) - 30 -

Visit us at: www.sarvaindia.com Licensed by Govt. of India ISO 9001:2015 Certified

 • The next question then is what establishes the relative
location of objects in the same layer. That is, say two
command buttons are in the same area of a form - which one
lies on top of which one? The order in which objects in the
same layer overlay each other is called the Z-order. This
order is first established when you draw the form. Items
drawn last lie over items drawn earlier. Once drawn,
however, clicking on the desired object and choosing Bring
to Front from Visual Basic's Edit menu can modify the Z-
order. The Send to Back command has the opposite effect.
Note these two commands only work within a layer; middle-
layer objects will always appear behind top-layer objects
and lower layer objects will always appear behind middle-
layer objects.

Line Tool

• The line tool creates simple straight line segments of
various width and color. Together with the shape tool
discussed next, you can use this tool to 'dress up' your
application.

• Line Tool Properties:

BorderColor Determines the line color.
BorderStyle Determines the line 'shape'. Lines can be
transparent, solid, Dashed, dotted, and combinations.
Border Width Determines line width

• There are no events or methods associated with the line
tool.

• Since the line tool lies in the middle-layer of the form
display, any lines drawn will be obscured by all controls
except the shape tool, label box or image box.

Shape Tool

• The shape tool can create circles, ovals, squares,
rectangles, and rounded squares and rectangles. Colors can
be used and various fill patterns are available.

• Shape Tool Properties:

• Like the line tool, events and methods are not used with
the shape tool.
• Shapes are covered by all objects except perhaps line
tools, label boxes and image boxes (depends on their Z-
order) and printed or drawn information. This is a good
feature in that you usually use shapes to contain a group of
control objects and you'd want them to lie on top of the
shape.

2. Attach this code to the cmdAssign_Click event:

Private Sub cmdAssign__Click ()
`Build message box that, gives your assignment
Dim Message As String
Message = “Destination: " + IstCities.Text + vbCr
Message = Message + "Seat Location: " + cboSeat.Text + vbCr
Message = Message + "Meal: " + cboMeal.Text + vbCr
MsgBox Message, vbOKOnly + vblnformation, "Your Assignment"
End Sub

When the Assign button is clicked, this code forms a message box
message by concatenating the selected city (from the list box 1stCities),
seat choice (from cboSeat), and the meal preference (from cboMeal).

3. Attach this code to the cmdExit_Click event:

Private Sub cmdExit_Click ()
End
End Sub

4. Run the application. Save the project (saved as Example3-3 in
LearnVB6/VB Code/ Class 3 folder).

Display Layers

• In this class, we will look at our first graphic type controls: line tools,

shape tools, picture boxes, and image boxes. And, with this
introduction, we need to discuss the idea of display layers.

• Items shown on a form are not necessarily all on the same layer of
display. A form's display is actually made up of three layers as
sketched below. All information displayed directly on the form (by
printing or drawing with graphics methods) appears on the bottom-
layer. Information from label boxes, image boxes, line tools, and
shape tools, appears on the middle-layer. And, all other objects are
displayed on the top-layer.

• What this means is you have to be careful where you put things on a

form or something could be covered up. For example, a command
button placed on top of it would hide text printed on the form. Things
drawn with the shape tool are covered by all controls except the
image box.

SARVA EDUCATION (SITED) (Running- An I.T & Skill Advancement Training Programme) - 31 -

Visit us at: www.sarvaindia.com Licensed by Govt. of India ISO 9001:2015 Certified

Temperature Conversion Application Specifications

The application should have a scroll bar which adjusts temperature in
degrees Fahrenheit from some reasonable minimum to some
maximum. As the user changes the scroll bar value, both the
Fahrenheit temperature and Celsius temperature (you have to calculate
this) in integer format should be displayed. The formula for converting
Fahrenheit (F) to Celsius (C) is.

C = (F - 32)*5/9

To convert this number to a rounded integer, use the Visual Basic
Clnt() function. To change numeric information to strings for display
in label or text boxes, use the Str() or Format() function. Try to build
as much of the application as possible before looking at my approach.
Try incorporating lines and shapes into your application if you can.

One Possible Approach to Temperature Conversion Application:

1. Place a shape, a vertical scroll bar, four labels, and a command
button on the form./ Put the scroll bar within the shape - since it is in
the top-layer of the form, it will lie in the shape. It should resemble
this:

2. Set the properties of the form and each object.

Form1:
 BorderStyle 1-Fixed Single
 Caption Temperature Conversion
 Name frmTemp

Shape1:
 BackColor White
 BackStyle 1-Opaque
 FillColor Red
 FillStyle 7-Diagonal
 Shape 4-Rounded Rectangle

VScroll1:
 LargeChange 10
 Max -60
 Min 120
 Name vsbTemp
 SmallChange 1
 Value 32

Horizontal and Vertical Scroll Bars

• Horizontal and vertical scroll bars are widely used in Windows

applications. Scroll bars provide an intuitive way to move
through a list of information and make great input devices.

• Both type of scroll bars are comprised of three areas that can be
clicked, or dragged, to change the scroll bar value. Those areas
are:

Clicking an end arrow increments the scroll box a small
amount, clicking the bar area increments the scroll box a large
amount, and dragging the scroll box (thumb) provides
continuous motion. Using the properties of scroll bars, we can
completely specify how one works. The scroll box position is
the only output information from a scroll bar.

• Scroll Bar Properties:

• A couple of important notes about scroll bars:

1. Note that although the extreme values are called Min and Max,

they do not necessarily represent minimum and maximum
values. There is nothing to keep the Min value from being
greater than the Max value. In fact, with vertical scroll bars, this
is the usual case. Visual Basic automatically adjusts the sign on
the SmallChange and LargeChange properties to insure proper
movement of the scroll box from one extreme to the other.

2. If you ever change the Value, Min, or Max properties in code,
make sure Value is at all times between Min and Max or and
the program will stop with an error message.

• Scroll Bar Events:

Example 4-1

Temperature Conversion

Start a new project. In this project, we convert temperatures in
degrees Fahrenheit (set using a scroll bar) to degrees Celsius. As
mentioned in the Review and Preview section, you should try to
build this application with minimal reference to the notes. To that
end, let's look at the project specifications.

SARVA EDUCATION (SITED) (Running- An I.T & Skill Advancement Training Programme) - 32 -

Visit us at: www.sarvaindia.com Licensed by Govt. of India ISO 9001:2015 Certified

4. Attach the following code to the scroll bar Scroll event.

Private Sub vsbTemp_Scroll ()
‘Read F and convert to C
‘TempF = vsbTemp.Value
‘IblTempF. Caption = Str (TempF)
‘TempC = CInt ((TempF - 32) * 5 / 9)
‘IblTempC.Caption = Str(TempC)
End Sub

This code determines the scroll bar Value as it scrolls, takes that value
as Fahrenheit temperature, computes Celsius temperature, and displays
both values.

5. Attach the following code to the scroll bar Change event.

Private Sub vxbTemp_Change ()
‘Read F and convert to C
‘TempF = vsbTemp.Value
‘IblTempF.Caption = Str (TempF)
‘TempC = CInt ((TempF - 32) * 5 / 9)
‘IblTempC.Caption = Str (TempC)
End Sub

Note: this code is identical to that used in the Scroll event. This is
almost always the case when using scroll bars.

6. Attach the following code to the crndExit_Click procedure.

Private Sub cmdExit_Click ()
End
End sub

7. Give the program a try. Make sure it provides correct information at
obvious points. For example,32 F better always be the same as 0 C!
Save the project (saved as Ex-example4-1 in the LearnVB6/VB
Code/Class 4 folder) we'll return to it briefly in Class 5.

Picture Boxes

• The picture box allows you to place graphics information on a
form. It is best suited for dynamic environments - for example, when
doing animation.
• Picture boxes lie in the top layer of the form display. They behave
very much like small forms within a form, possessing most of the same
properties as a form.
• Picture Box Properties:

 Picture Box Events:

• Picture Box Methods:

Examples

picExample.Cls ‘clears the box picExample
picExample. Print "a picture box" `Print text string

 Picture Box LoadPicture Procedure:
An important function when using picture boxes is the LoadPicture
procedure. It is used to set the Picture property of a picture box at run-
time.

Label 1:
 Alignment 2-Center
 Caption Fahrenheit
 FontSize 10
 FontStyle Bold

Label2:
 Alignment 2-Center
 AutoSize True
 BackColor White
 BorderStyle 1-FixedSingle
 Caption 32
 FontSize 14
 FontStyle Bold
 Name IbITempF

Label3:
 Alignment 2-Center
 Caption Celsius
 FontSize 10
 FontStyle Bold

 Label4:

 Alignment 2-Center
 AutoSize True
 BackColor White
 BorderStyle 1-Fixed Single
 Caption 0
 FontSize 14
 FontStyle Bold
 Name ibiTempC

Command1:
 Cancel True
 Caption E&xit
 Name cmdExit

 Note the temperatures are initialized at 32F and OC, known values.
When done, the form should look like this:

3. Put, this code in the general, decorations of your code window.

Option Explicit
Dim TempF As Integer
Dim TempC As Integer

This makes the two temperature variables global.

SARVA EDUCATION (SITED) (Running- An I.T & Skill Advancement Training Programme) - 33 -

Visit us at: www.sarvaindia.com Licensed by Govt. of India ISO 9001:2015 Certified

CHAPTER – 7

To BUILD CLIENT-SERVER DATABASE

Client-Server is the term for application software environment in which the application is split into two components: the client also called front-end
which is the user interface half of the application; and the Server, also called the database server or back-end which contains access to the data.
In a non-client server system, the application is a single program that handles both the user interface and the database access the program.

REMOTE DATA CONTROL

Provides access to data stored in a remote ODBC data source through bound controls. The Remote Data Control enables you to move from row to
row in a result set and to display and manipulate data from the rows in bound controls. With Remote Data Control, you can:

 Establish a connection to a data source based on its 'properties'.
 Pass any changes made to bound controls back to the data source.
 Pass the current row's data to corresponding bound controls.

The Remote Data Control automatically handles a number of contingencies including empty result sets, adding new rows, editing and updating
existing rows, converting and displaying complex data types, and handling some types of errors. The Remote Data control behaves like the Jet-
driven Data Control in most respects. The following guidelines illustrate few differences that apply when setting the SQL property.
The SQL property of the Remote Data Control like the Data Control Record Source property except that it cannot accept the name of a table by
itself. The result set created by the Remote Data Control might not be in the same order as the Recordset created by the Data Control.

ResultSet Type Property

Returns or sets a value indicating the type of the ResultSet cursor created or to create.
Syntax:

obj.ResultType= [value]

rdopenStatic 3 A static-type rdoResultSet
rdopenKeyset 1 A Keyset-type rdoResultSet. (Default)

DataSourceName Property

Returns or sets the DataSource name for a Remote Data Control.
Syntax:

obj.DataSourceName= [dataSourceName]

ResultSet

Retains or sets in rdoResultSet object defined by a Remote Data Control or as returned by the open ResultSet method.
Syntax:

Set obj.Resultset = [value]

SQL

Returns or sets the SQL statement that defines the every executed by an rdo Query object or a Remote Data Control.
Syntax:

obj.SQL = [value]

where Value' can be a valid SQL statement or a stored procedure.

USING THE RDC IN YOUR PROJECT

To use the RDC in you VBasic project, do the following:-

1. In the Visual Basic, select the menu command Project ->Components.
2. From the list of components, select Microsoft Remote Data Control. Also add a reference to the Microsoft Data Bound Grid Control.

SARVA EDUCATION (SITED) (Running- An I.T & Skill Advancement Training Programme) - 34 -

Visit us at: www.sarvaindia.com Licensed by Govt. of India ISO 9001:2015 Certified

3. Click OK, the Remote Data and Data Bound Grid Controls appear in the Visual Basic toolbox.
4. Use the toolbox to create instances of the RDC and the Data Bound Grid in the form in your project.
5. In the DataSourceName property of the RDC, pick the DSN for your database connection (Access, SQL Server, Oracle etc.). The DSN you

created by the ODBC administrator.
6. Set the RDC SQL property to this: Select * from Authors
7. Set the DBGrid control's DataSource property to MSRDC, the name of the Remote Data Control.
8. Run the application, the application retrieves the authors table and displays it in the data grid.

Example

Dim en As New rdoConnection
en.Connect = "dsn=TestRDC;database=BIBLIO;uid=rdo;pwd=" en.EstablishConnection
Set MSRDC1.Resultset = en.QpenResultset ("select * from authors]")

Use the RemoteData control properties to describe the data source, establish a connection, and specify the type of cursor to create. If you alter
these properties once the result set is created, use the Refresh method to rebuild the underlying rdoResultset based on the new property settings.

The RemoteData control behaves like the Jet-driven Data control in most respects. The following guidelines illustrate a few differences that apply
when setting the SQL property.

You can treat the RemoteData control's SQL property like the Data control's RecordSource property except that it cannot accept the name of a
table by itself, unless you populate the rdoTables collection first. Generally, the SQL property specifies an SQL query. For example, instead of just
"Authors", you would code "SELECT*FROM AUTHORS" which provides the same functionality. However, specifying a table in this manner is
not a good programming practice as it tends to return too many rows and can easily exhaust workstation resources or lock large segments of the
database.
The result set created by the RemoteData control might not be in the same order as the Recordset created by the Data control. For example, if the
Data control's RecordSource property is set to "Authors" and the RemoteData control's SQL property is set to "SELECT * FROM AUTHORS",
the first record returned by Jet to the Data control is based on the first available index on the Authors table. The RemoteData control, however,
returns the first row returned by the remote database engine based on the physical sequence of the rows in the database, regardless of any indexes.
In some cases, the order of the records could be identical, but not always.

This difference in behavior can affect how bound controls handle the resulting rows — especially multiple-row bound controls like the DataGrid
control. You can manipulate the RemoteData control with the mouse — to move the current row pointer from row to row, or to the beginning or
end of the rdoResultset by clicking the control. As you manipulate the RemoteData control buttons, the current row pointer is repositioned in the
rdoResultset. You cannot move off either end of the rdoResultset using the mouse. You also can't set focus to the RemoteData control.

You can use the objects created by the RemoteData control to create additional rdoConnection, rdoResultset, or rdoQueryobjects.

You can set the RemoteData control Resultset property to an rdoResultset created independently of the control. If this is done, the RemoteData
control properties are reset based on the new rdoResultset and rdoConnection.

You can set the Options property to enable asynchronous creation of the rdoResultset (rdAsyncEnable) or to execute the query without creating a
temporary stored procedure (rdExecDirect).

The Validate event is triggered before each reposition of the current row pointer. You can choose to accept the changes made to bound controls or
cancel the operation using the Validate event's action argument.

The RemoteData control can also manage what happens when you encounter an rdoResultset with no rows. By changing the EOFAction
property, you can program the RemoteData control to enter AddNew mode automatically.

Using Programming Code

To create an rdoResultset programmatically with the RemoteData control:
Set the RemoteData control properties to describe the desired characteristics of the rdoResultset.

Use the Refresh method to begin the automated process or to create the new rdoResultset. Any existing rdoResultset is discarded.
All of the RemoteData control properties and the new rdoResultset object may be manipulated independently of the RemoteData controlwith or
without bound controls. The rdoConnection and rdoResultset objects each have properties and methods of their own that can be used with
procedures that you write.
For example, the MoveNext method of an rdoResultset object moves the current row to the next row in the rdoResultset. To invoke this method
with an rdoResultset created by a RemoteData control, you could use this code:

RemoteData1 .Resultset.MoveNext

SARVA EDUCATION (SITED) (Running- An I.T & Skill Advancement Training Programme) - 35 -

Visit us at: www.sarvaindia.com Licensed by Govt. of India ISO 9001:2015 Certified

Remote Data Objects

Remote Data Objects provide for very fast ODBC access to manipulate ODBC databases.

The set of Remote Data Objects are referred to as RDO.To access any of these objects, you must include a reference to the objects by selecting the Project->
References menu option. This will bring up a dialog box. Select the entry Microsoft Remote Data Object

RDO is to an ODBC data source as Data Access Object (DAO) is to local data using the JET engine (Access). DAO is another connection method for database
access. DAO is provided in all versins of Visual Basic and is much slower than RDO. The main difference is that RDO does not process any queries. It is equivalent
to using the dbPassthrough option when executing a DAO query.

USING THE ADO DATA CONTROL

The ADO Data control uses Microsoft ActiveX Data Objects (ADO) to quickly create connections between data-bound controls and data providers. Data-bound
controls are any controls that feature a DataSource property. Data providers can be any source written to the OLE DB specification. You can also easily create
your own data provider using Visual Basic's class module.

Although you can use the ActiveX Data Objects directly in your applications, the ADO Data control has the advantage of being a graphic control
(with Back and Forward buttons) and an easy-to-use interface that allows you to create database applications with a minimum of code.
Several of the controls found in Visual Basic's Toolbox can be data-bound, including the CheckBox, ComboBox, Image, Label, ListBox,
PictureBox, and TextBox controls. Additionally, Visual Basic includes several data-bound ActiveX controls such as the DataGrid, DataCombo,
Chart, and DataList controls. You can also create your own data-bound ActiveX controls, or purchase controls from other vendors.

The ADO Data Control is similar to the intrinsic Data control and the Remote Data Control (RDC). The ADO Data Control allows you to
quickly create a connection to a database using Microsoft ActiveX Data Objects (ADO).

At design time, you can create a connection by setting the ConnectionString property to a valid connection string, then set the RecordSource
property to a statement appropriate to the database manager.

You can also set the ConnectionString property to the name of a file that defines a connection; the file is generated by a Data Link dialog box,
which appears when you click ConnectionString on the Properties window and then click either Build or Select.

Connect the ADO Data Control to a data-bound control such as the DataGrid, DataCombo, or DataList control by setting the DataSource
property to the ADO Data Control.

At run time, you can dynamically set the ConnectionString and RecordSource properties to change the database. Alternatively, you can set the
Recordset property directly to a previously-opened recordset.

SARVA EDUCATION (SITED) (Running- An I.T & Skill Advancement Training Programme) - 36 -

Visit us at: www.sarvaindia.com Licensed by Govt. of India ISO 9001:2015 Certified

CHAPTER – 8

DATA REPORTS

DED helps in minimizing the amount of code needed to establish
database connections and execute queries.

GETTING STARTED

The report designer adapts a small subset of Visual Basic native bound
controls to the data report page of the Tool Box: - RptLabel,
RptTextBox, Rptlmage, RptLine and RptShape. A unique RptFunction
control lets you to add calculated fields to the report.
 To start with select from menu "Project/Add Data Report".
 In the properties of DataReport1, choose DataSource as

"DataEnvironmentl1 and in the DataMember choose
"Command 1" (as created above).

 The default report form in design mode consists of Page
Header, footer, detail sections.

 Once the properties are set, drag the "Command1 of the
DataEnvironmentl" on the Detail section of the report.This
step adds RptLabels and RptTextBoxes for the row values and
automatically sets data member and datafields of the textboxes.

 Once the Details section is set you can the Page Header and
Page Footer Sections by dragging the controls or the fields
from the Coomand1 as per requirement. Its simple to size or
align a report control as it is same as that in any other control.
Setting the "DataFormat" property can do formatting of the
report.

USING RPTFUNCTION CONTROL

The RptFunction Control can take place of the aggregate fields created
by the grouped Command Objects. Table 9.1 enumerates the allowable
values of the RptFunction Control.

LINKING A REPORT TO YOUR APPLICATION

To link it to your application, Set a command Button on the Form
which you want the Report to appear. Write “ DataReport1.Show”in
the event of the Button.

__

Data Report is a Report Designer that comes with the enterprise
edition of Visual Basic 6.0, a fully integrated environment which has
completely replaced Crystal reports of earlier versions. It is used to
perform the following functions:
1. Design how the report looks
2. Add groupings that break every time the data in this group is

changed.
3. Add subtotals based on these groupings, if desired.

The Report Designer designs in three steps:
1. Make connection to a database using Data Environment Designer.
2. Design the report layout in the data reports design environment.
3. Write code in your Visual Basic application that runs the report

designed in the step 1.

WORKING WITH THE DATA ENVIRONMENT DESIGNER

Data Environment Designer (DED) is an upgraded version of VB5.0
Enterprise Edition's User Connection Designer for RDO. DED lets
you to connect to any database having a native OLE DB data
provider or, using OLE DB for ODBC provider. A single DED
instance can support a multitude of independent database
connections.
 When you open a new Data Project, a DED instance

automatically appears and double clicking the
DataEnvironment1 item opens the Data Project –
Dataenvironment1 window.

 If you are opening the DataEvironment window on your
Standard EXE project or Application Project then, you must
choose it separately from the menu as "Project / More ActiveX
Designers / Data Environment".

To make the first connection, right click Connection 1 and choose
properties to open the provider page of Data Link Properties in which
you select the OLE DB data provider. Clicking Next displays the
Connection page in which you have to specify the location of
database or server, the name of the database, login ID, and password.
The database provider you choose determines the set of controls on
the Connection page.
 Choose Microsoft Jet 4.0 OLE DB Provider.
 Now Click Test Connection to check whether the connection

has succeeded.
 Click Ok
 Once a connection is specified choose "View / Data View

Window" to display the members of the Data Environment
Connections Collection.

 To add a Command Object to a selected connection, right click
the connection and choose "Add Command". Select the class of
database object (stored Procedure, Table, View, or Synonym for
Access) in the Database Object list and then select an Object
from the Object Name List. Alternatively, select the SQL option
and type an SQL statement in the textbox. The Advanced page
of CommandName Properties sheet lets you to choose between
client - or - sever - side cursors, set the lock type, and specify
other property values for the Command execution.

SARVA EDUCATION (SITED) (Running- An I.T & Skill Advancement Training Programme) - 37 -

Visit us at: www.sarvaindia.com Licensed by Govt. of India ISO 9001:2015 Certified

CHAPTER – 9

INTRODUCTION TO ActiveX PROGRAMMING

If ADO is installed on your computer, you can begin using it by
making a reference to the ADO library in your VB application,
the same way you make references to the ADO or RDO libraries:

1. In your Visual Basic project, choose Project, References.
2. The Reference dialog box appears.
3. Check the box for Microsoft ActiveX Data Objects 2.0
library and then click OK.

You can now use ADO in your code.

USING ADO WITH OTHER DATA ACCESS OBJECT
LIBRARIES

If you're creating an application designed to use ADO in
conjunction with another data access object library, such as DAO,
you need to be careful to differentiate between, for example, the
DAO Recordset object and the ADO Recordset object. They
aren't interchangeable.

If you have references to both DAO an ADO in your project and
you create a Recordset variable, how do you know whether you
have a DAO or ADO-style Recordset? The answer has to do with
the order in which you added the reference to your project.

If you add a reference to the DAO library first, creating a
Recordset object gives you a DAO-style Recordset; you need to
use the full class name ADODB. Recordset to explicitly create an
ADO-style Recordset. The spelled-out name of a class is also
known as its ProglD.

If you don't want to make a direct reference to the object library
in your code, you have an alternative. You can control which
object library is accessed by default by using the priority setting
in the References dialog box. For example, to give the DAO
Object Library priority over the ADO Object Library, do the
following:

1. in your VB project, choose Project, References.
2. References to both the Microsoft DAO 3.51 Object Library
and Microsoft ActiveX Data Objects 2.0 Library should appear in
the list of references (assuming they're installed on your
computer).
3. Click (but don't uncheck) the reference to the DAO object
library.
4. Click the upward-pointing arrow labeled priority. The
reference to the DAO object library moves up in the list. This
means that DAO will be used when you create an object (such as
the Recordset object) that has the same name as an object in the
ADO library.

Having control over the priority of the object models ensures that
whenever you create a Recordset object variable in your code, it's
a DAO Recordset, not an ADO Recordset.

Creating Both DAO and ADO Recordset Objects in Visual Basic
Code using ProglD Syntax:

Building Visual Basic Applications with ActiveX Data Objects

Microsoft ActiveX Data Objects (ADO) is an object-oriented database access
technology similar to Data Access Objects (DAO) and Remote Data Objects
(RDO).

ADO is currently being positioned by Microsoft as a technique for accessing
databases from a Web server. Because ADO is provided in the form of an
ActiveX Server library (just as DAO and RDO are), you can use ADO in your
Visual Basic application with no problem. In fact, in many ways, you'll find that
it's easier to get a client/server database using ADO than the other alternatives
discussed earlier.

Understanding the OLE OB/ADO Architecture

Most Visual Basic Developers never interact with OLE DB directly. Instead, they
program against ActiveX Data Objects, the object model that provides interfaces
into OLE DB. This architecture is illustrated in figure below:

There aren't as many OLE DB providers as there are ODBC drivers, but
the number increased significantly when ADO 2.0 was released in 1998.
This release, which is included in Visual Basic 6.0, includes native
providers for SQL Server, Oracle, and Microsoft Jet/Access.

It's very likely that you will be able to get to a relational data source you
prefer using ADO and OLE DB even if there aren't native OLE DB
providers for it. This is because there is a generic OLE DB provider for
ODBC relational databases.

Installing And Creating A Reference to ADO in your Visual Basic
Application

Before you can begin working with ADO in your Visual Basic
application, it must be installed on your computer. ADO is installed as
part of the normal install of Visual Basic 6.0

SARVA EDUCATION (SITED) (Running- An I.T & Skill Advancement Training Programme) - 38 -

Visit us at: www.sarvaindia.com Licensed by Govt. of India ISO 9001:2015 Certified

The common object's provider property is a text string that
tells the connection which OLE DB provider to use. To use the
ODBC provider for OLE DB, you don't need to specify a
provider because the ODBC provider is the default. However,
you can specify it for clarity if you want.
You use a connection string in ADO to provide information
about how to connect to the database server. When you're
using the ODBC provider for OLE DB, the connection string is
the same as an ODBC connect string. This means that the
exact information expected by the ODBC driver can vary from
implementation to implementation. For other providers, the
connection string can be of an entirely different syntax.
When you're using the ODBC provider, the connection String
property can be a Data Source Name (DSN) or it can be a
DSN-less connection. Here's an example of a connection to a
database using the ODBC provider with a DSN:

Cn. Provider = "MSDASQL"
Cn.Connection String = "DSN=Novelty;"

Using a DSN in the connection string obviously requires that a
DSN called Novelty must actually exist on the client computer.

Here's an example of the same connection with a DSN-less
connection:

cn.provider = "MSDASQL"
cn.ConnectionString = "DRIVER={SQL Server};
DATABASE=novelty;
UID=randy;PWD=prince;"

WORKING WITH CURSORS

Just as with RJJO and DAO,ADO provides support for a
number of types of cursors. In addition for providing support
for navigating through the recordset one record at a time,
different types of cursors permit you to control how the
management of a recordset takes place.
You set the location of the cursor by assigning a value to the
CursorLocation property of the Recordset object. Table below
lists the types of cursors available with the ADO Connection
object.

Choosing a client-side cursor means that ADO and OLE DB
handle cursor operations. Client-side cursors often have
abilities that aren't available on the server. For example, in
ADO, you can create a disconnected recordset, which permits
you to manipulate records without a persistent connection to
the server. This capability is a function of the client-side cursor
library. In ADO, the CursorLocation property is applicable to
both the Recordset and Connection objects. If you assign the
CursorLocation property of a Connection object, all recordsets
you create from that connection have the same cursor location
as its associated Connection object.In addition to specifying
the cursor's location, you have the ability to create four
different types of cursors in ADO. Your choice of cursor is
generally governed by a balance between functionality and
performance.

Option Explicit
' References DAO 3.51
' References ADO 2.0

‘Dim db As DAO. Database

‘Private adoRS As adodb.Recordset
‘Private daoRS As DAO.Recordset
‘Private en As adodb.Connection
‘Dim strSQL As String

Private Sub Form_load()

‘Set cn = New adodb.Connection
‘strSQL = "SELECT * FROM tblCustomer"

End Sub

Private Sub cmdShow_Click ()

` ** Create DAO recordset
Set cn = OpenDatabase (".. \. . \DB\novelty.mdb")
Set daoRS = db . OpenRecordset (strSQL)
MsgBox "DAO query returns " & daoRS . Fields ("FifstName")

' ** Create ADO recordset
Set cn = New adodb. Connection
cn.ConnectionString = "DSN=JetNovelty;"

cn. Open
Set adoRS = en . Execute (strSQL)
MsgBox "ADO query returns" & adoRS. Fields (`FirstName')

End Sub

USING THE ADO CONNECTION OBJECT TO CONNECT TO A
DATA SOURCE

In ActiveX Data Objects, you use the connection object to establish a
connection to a data source. At the same time, as code examples later in this
section demonstrate, you don't need to use a connection object to perform
useful work with ADO-this aspect of ADO is one of its advantages over
ADOs, which is far more dependent on the concept of a connection object.

You use the ADO connection object's open method to establish the
connection with the data source. In order to tell ADO how to get to the data
source, you must provide information in the form of a connect string
identical to the ODBC connect string.

You use the connection object's connection string property to do this. You
also have the option of choosing which provider you want to use by setting
the connection object's provider property.

Specifying an OLE DB Provider and Connection String

You specify an OLE DB provider using the Provider property of the ADO
connection object. This property tells ADO which OLE DB provider to use
in order to execute commands against the server. I

f you don't specify a provider, or if you don't use a connection object, you get
the default provider, which is the ODBC provider for OLE DB, also known
as MSDASQL.

SARVA EDUCATION (SITED) (Running- An I.T & Skill Advancement Training Programme) - 39 -

Visit us at: www.sarvaindia.com Licensed by Govt. of India ISO 9001:2015 Certified

Opening and Closing a Connection Data Source
To issue commands to a data source using ADO, you open a
connection to that data source. You typically do this using the
ADO connection object's open method. When you're done with
the data source, you close it using the connection object's close
method. Here's the ADO connection object's open method
syntax:

C n . O p e n [c o n n e c t] , [u s er id] , [pa ss w ord]

All the arguments to the open method are optional. If you don't
supply a connection string as an argument to the open method,
you can instead supply it using the ConnectionString property
of the connection object. The effect is the same.

USING THE ADO RECORDSET OBJECT TO
MANIPULATE DATA

The ADO Recordset object, similar to DAO's recordset and
RDO's rdoResultset object, is the way to access information
retrieved from the data provider. The ADO Recordset has
many of the same properties and methods as the other object
models' recordset objects, so you can work with it the same
way.

The position of the ADO Recordset object in the ADO object
model, as well as its properties and methods.

The procedure for creating an ADO Recordset object is similar
to creating an rdoResultset object in RDO. However, ADO
adds an interesting twist: the ability to create a Recordset
object that does not require an implicit connection object.

Creating an ADO Recordset Object Using a Connection and
Recordset Object:

 ' References ADO 2.0 Private en As Connection

Private Sub Form_Load()
Set en = New ADODB.Connection

en.ConnectionString = *DSN=JetNovelty;" en.Open End Sub

Private Sub cmdQueryCN_Click()

Dim rs As ADODB. Recordset Set rs = New ADODB.Recordset

rs. Source = "select *" &_

"from tblCustomer * &_ "where State = 'DE' " &_ "order by LastName, FirstName"
 Set rs.ActiveConnection = en
 rs.Open

 IstData.Clear

 Do Until rs.EOF
 IstData.Addltem rs.Fields("FirstName") & " " &_
 rs.Fields("LastName") & " " &_
 rs.Fields("Address")
 rs.MoveNext

Loop

End Sub
Private Sub form_Unload (Cancel As Integer)

cn.Close
Set cn = Nothing

End Sub

You specify a cursor type by assigning the CursorType property of the
Recordset object. Table below lists the types of cursors you can create in ADO.

Of course, the reason you'd choose a forward-only cursor rather than a keyset or
dynamic cursor is performance - if you're simply populating a list box or
printing a list of items stored in the database, a forward-only cursor makes more
sense and will give you better performance. Note that if the data provider can't
create the specific type of cursor you ask for, it will create whatever type or
cursor it can. It will not, generally, generate an error unless you attempt to do
something that's specifically prohibited with the kind of cursor you have (for
example, a Move Previous method on a forward - only cursor).

RECORD LOCKING IN ADO

As with other database access object models, ADO permits you to set different
types of record-locking modes. You do this in situations where you need
control over records locking modes. You do this in situations where you need
control over how records are updated by multiple users in the database.

It's extremely important to understand that the default lock method in ADO is
adLockReadOnly. This is one of the most significant differences between ADO
and DAO programming, since in DAO, recordsets are editable by default. This
means that if you don't bother to set the LockType and CursorType properties,
your ADO recordsets will always be read-only.

SARVA EDUCATION (SITED) (Running- An I.T & Skill Advancement Training Programme) - 40 -

Visit us at: www.sarvaindia.com Licensed by Govt. of India ISO 9001:2015 Certified

Option Explicit
'References ADO 2.0

Private en As ADODB.Connection
Private mrsCust As ADODB.Recordset

Private Sub Form_Load()
 Set cn = New ADODB.Connection
 Cn.ConnectionString = "DSN=JetNovelty;"
 Cn.Open

Set mrsCust = New ADODB.Recordset
mrsCust.LockType = “adLockOptimistic
mrsCust.CursorType = adOpen Keyset

End Sub

Private Sub cmdLlst__Cllck ()

Dim rs As ADODB . Recordset
Set rs = New ADODB . Recordset

 rs. Source = "select *” &_
 "from tblCustomer” &_
 "where State = 'DE'" &_
 "order by LastName, FirstName"

 Set rs.ActiveConnection = cn rs.Open

 1stData.Clear

 Do Until rs. EOF
1stData.Addltem rs.Fields ("FirstName")& "
 rs. Fields ("LastName")
 1stData.ItemData(IstData.Newlndex) = rs.Fields("ID")
 rs.. MoveNext
 Loop

rs.Close
Set rs=Nothing

End Sub

Private Sub lstData_Click() Dim strSQL As String

 strSQL = "select *" &_
 "from tblCustomer" &_
 "where ID=" & IstData. ItemData.(1stData. Listlndex)

mrsCust.Source = strSQL

 Set mrsCust.ActiveConnection = cn mrsCust.Open
txtFirstName.Text = mrsCust.Fields("FirstName")
txtLastName.Text = mrsCust.Fields("LastName")
txtAddress.Text = mrsCust.Fields("Address")
txtCity.Text = mrsCust.Fields("City")

 mrsCustust.Close
End Sub

Private Sub cmdUpdate_Click ()
Dim strSQL As String

strSQL = "select *" &_
"from tblCustomer" &_

"where ID =" & IstData. ItemData
(IstData.Listlndex)

l_Seats Int
ll_Seats Int

Nthing

UPDATING AND INSERTING RECORDS USING THE RECORDSET
OBJECT

Performing inserts and updates of records in ADO is almost precisely the same
as in DAO. To insert a record, follow these steps:

1. Open a recordset.
2. Execute the AddNew method of the Recordset object
3. Assign values to the fields in the Recordset object.
4. Save the record by executing the update method of the Recordset object.

To update an existing record using the ADO Recordset object, follow these
steps:

1. Open a recordset.
2. Assign values to the fields in the Recordset object. (Notice that you don't

have to execute the Edit method of the Recordset as you did in DAO -
ADO does away with that).

3. Save the record by executing the update method of the Recordset object.

The application that demonstrates entering and updating records permits the
user to first populate a list box with customer data, and then select a particular
customer to edit. Updating Records in ActiveX Data Objects:

SARVA EDUCATION (SITED) (Running- An I.T & Skill Advancement Training Programme) - 41 -

Visit us at: www.sarvaindia.com Licensed by Govt. of India ISO 9001:2015 Certified

Train_Pass_Details

Field Name Datatype
Pass_id Vachar(7) Primary key to this table
Coach_No Vachar(3)
Seat_No Int
Date_of_Jounary Determine

Note: Pass_id of Train_Pass_Details is foreign key to Pass_id of Passenger_Details.

Develop an application

a. To list the passenger ids in the combo box
b. To display all the details of a given passenger, the train by which he is traveling, his coach number, seat number and ticket fare based on the

class of his travel and the charges for that class for the train by which he is traveling.

Note: The data for all this should already be stored in the tables.

Controls

Property

Settings

Combobox

Name

cmbPassld
 CommandButton

Name

cmdPassDetails

Caption

List Passenger Details
 TextBox

Name

txtid
 TextBox

Name

txtname
 TextBox

Name

txtsex
 TextBox

Name

txtage
 TextBox

Name

txtclass
 TextBox

Name

txtfare
 TextBox

Name

txtcoach
 TextBox

Name

txtseat
 TextBox

Name

txtjDate
 TextBox

Name

txtTname

Also design labels for the respective fields.

Write a program in Visual Basic to make a math calculator.
