

SARVA EDUCATION (SITED) (Running- An I.T & Skill Advancement Training Programme) - 1 -

Visit us at: www.sarvaindia.com Licensed by Govt. of India ISO 9001:2008 Certified

Simplified

e- Book

JAVA

SARVA EDUCATION SM - An I.T & Skill Advancement Training Programme, Initiated by SITED®-India

An ISO 9001:2015 Certified Organization

Legal: No part of this e-book publication may be reproduced, stored in retrieval system or transmitted in any form or by any means, electronic, mechanical,
photocopying, and recording otherwise, without the prior permission of the abovementioned Organization. Every possible effort has been made in bringing
out the text in this e-book correctly and completely to fulfill the aspirations of students. The Organization does not take any warranty with respect to the
accuracy of the e-book and hence cannot be held liable in any way for any loss or damages whatsoever. This book shall be used for non commercial I.T Skill
Advancement awareness programme, not for commercial purposes publicly.
This is an independent work, complied solely for information and guidance for students studying under Organization’s I.T & Skill Advancement Training
literacy awareness Programmes. The informations have been compiled from various sources. The Organization does not assume any responsibility for
performance of any software, or any part thereof, described in the e-book. Product Names mentioned are used for identification/IT literacy awareness
purposes only and may be trademarks of their respective companies. All trademark, contents referred to in the e-book are acknowledged as properties of
their respective owners. The Centre Head & students should, in their own interest, confirm the availability of abovementioned e-books titles features or
softwares from their respective authorized Companies or Owners or dealers.

SARVA EDUCATION (SITED) (Running- An I.T & Skill Advancement Training Programme) - 2 -

Visit us at: www.sarvaindia.com Licensed by Govt. of India ISO 9001:2008 Certified

Unit-Ii

 JAVA1

CHAPTER - 1

OBJECT-ORIENTED PROGRAMMING CONCEPTS

A software object.

Software objects are conceptually similar to real-world objects: they
too consist of state and related behavior. An object stores its state in
fields (variables in some programming languages) and exposes its
behavior through methods (functions in some programming
languages). Methods operate on an object's internal state and serve as
the primary mechanism for object-to-object communication. Hiding
internal state and requiring all interaction to be performed through an
object's methods is known as data encapsulation — a fundamental
principle of object-oriented programming.

Consider a bicycle, for example:

 A bicycle modeled as a software object.

By attributing state (current speed, current pedal cadence, and current
gear) and providing methods for changing that state, the object
remains in control of how the outside world is allowed to use it. For
example, if the bicycle only has 6 gears, a method to change gears
could reject any value that is less than 1 or greater than 6.

If you've never used an object-oriented programming language
before, you'll need to learn a few basic concepts before you can begin
writing any code. This lesson will introduce you to objects, classes,
inheritance, interfaces, and packages. Each discussion focuses on
how these concepts relate to the real world, while simultaneously
providing an introduction to the syntax of the Java programming
language.

OBJECT

An object is a software bundle of related state and behavior.
Software objects are often used to model the real-world objects that
you find in everyday life. This lesson explains how state and
behavior are represented within an object, introduces the concept of
data encapsulation, and explains the benefits of designing your
software in this manner.

Objects are key to understanding object-oriented technology. Look
around right now and you'll find many examples of real-world
objects: your dog, your desk, your television set, your bicycle.

Real-world objects share two characteristics: They all have state and
behavior. Dogs have state (name, color, breed, hungry) and behavior
(barking, fetching, wagging tail).

Bicycles also have state (current gear, current pedal cadence, current
speed) and behavior (changing gear, changing pedal cadence,
applying brakes).

Identifying the state and behavior for real-world objects is a great
way to begin thinking in terms of object-oriented programming.

Take a minute right now to observe the real-world objects that are in
your immediate area. For each object that you see, ask yourself two
questions: "What possible states can this object be in?" and "What
possible behavior can this object perform?".

Make sure to write down your observations. As you do, you'll notice
that real-world objects vary in complexity; your desktop lamp may
have only two possible states (on and off) and two possible behaviors
(turn on, turn off), but your desktop radio might have additional
states (on, off, current volume, current station) and behavior (turn on,
turn off, increase volume, decrease volume, seek, scan, and tune).

You may also notice that some objects, in turn, will also contain
other objects. These real-world observations all translate into the
world of object-oriented programming.

SARVA EDUCATION (SITED) (Running- An I.T & Skill Advancement Training Programme) - 3 -

Visit us at: www.sarvaindia.com Licensed by Govt. of India ISO 9001:2008 Certified

The syntax of the Java programming language will look new to you,
but the design of this class is based on the previous discussion of
bicycle objects. The fields cadence, speed, and gear represent the
object's state, and the methods (changeCadence, changeGear, speedUp
etc.) define its interaction with the outside world.

You may have noticed that the Bicycle class does not contain a main
method. That's because it's not a complete application; it's just the
blueprint for bicycles that might be used in an application. The
responsibility of creating and using new Bicycle objects belongs to
some other class in your application.

Here's a BicycleDemo class that creates two separate Bicycle objects
and invokes their methods:

class BicycleDemo {
 public static void main(String[] args) {

 // Create two different Bicycle objects
 Bicycle bike1 = new Bicycle();
 Bicycle bike2 = new Bicycle();

 // Invoke methods on those objects
 bike1.changeCadence(50);
 bike1.speedUp(10);
 bike1.changeGear(2);
 bike1.printStates();

 bike2.changeCadence(50);
 bike2.speedUp(10);
 bike2.changeGear(2);
 bike2.changeCadence(40);
 bike2.speedUp(10);
 bike2.changeGear(3);
 bike2.printStates();
 }
}

The output of this test prints the ending pedal cadence, speed, and gear
for the two bicycles:
cadence:50 speed:10 gear:2
cadence:40 speed:20 gear:3

INHERITANCE

Inheritance provides a powerful and natural mechanism for organizing
and structuring your software. This section explains how classes
inherit state and behavior from their superclasses, and explains how to
derive one class from another using the simple syntax provided by the
Java programming language.
Different kinds of objects often have a certain amount in common with
each other. Mountain bikes, road bikes, and tandem bikes, for
example, all share the characteristics of bicycles (current speed,
current pedal cadence, current gear). Yet each also defines additional
features that make them different: tandem bicycles have two seats and
two sets of handlebars; road bikes have drop handlebars; some
mountain bikes have an additional chain ring, giving them a lower gear
ratio.

Object-oriented programming allows classes to inherit commonly used
state and behavior from other classes. In this example, Bicycle now
becomes the superclass of MountainBike, RoadBike, and

Bundling code into individual software objects provides a number of
benefits, including:

1. Modularity: The source code for an object can be written and
maintained independently of the source code for other objects.
Once created, an object can be easily passed around inside the
system.

2. Information-hiding: By interacting only with an object's
methods, the details of its internal implementation remain
hidden from the outside world.

3. Code re-use: If an object already exists (perhaps written by
another software developer), you can use that object in your
program. This allows specialists to implement/test/debug
complex, task-specific objects, which you can then trust to run
in your own code.

4. Pluggability and debugging ease: If a particular object turns
out to be problematic, you can simply remove it from your
application and plug in a different object as its replacement.
This is analogous to fixing mechanical problems in the real
world. If a bolt breaks, you replace it, not the entire machine.

CLASS

A class is a blueprint or prototype from which objects are created.
This section defines a class that models the state and behavior of a
real-world object. It intentionally focuses on the basics, showing how
even a simple class can cleanly model state and behavior.
In the real world, you'll often find many individual objects all of the
same kind. There may be thousands of other bicycles in existence, all
of the same make and model. Each bicycle was built from the same
set of blueprints and therefore contains the same components. In
object-oriented terms, we say that your bicycle is an instance of the
class of objects known as bicycles. A class is the blueprint from
which individual objects are created.
The following Bicycle class is one possible implementation of a
bicycle:
class Bicycle {

 int cadence = 0;
 int speed = 0;
 int gear = 1;

 void changeCadence(int newValue) {
 cadence = newValue;
 }

 void changeGear(int newValue) {
 gear = newValue;
 }

 void speedUp(int increment) {
 speed = speed + increment;
 }

 void applyBrakes(int decrement) {
 speed = speed - decrement;
 }

 void printStates() {

System.out.println("cadence:"+cadence+"
speed:"+speed+" gear:"+gear);
 }
}

SARVA EDUCATION (SITED) (Running- An I.T & Skill Advancement Training Programme) - 4 -

Visit us at: www.sarvaindia.com Licensed by Govt. of India ISO 9001:2008 Certified

interface Bicycle {

 void changeCadence(int newValue);

 void changeGear(int newValue);

 void speedUp(int increment);

 void applyBrakes(int decrement);
}

To implement this interface, the name of your class would change (to
ACMEBicycle, for example), and you'd use the implements keyword
in the class declaration:

class ACMEBicycle implements Bicycle {

 // remainder of this class implemented as
before

}

Implementing an interface allows a class to become more formal about
the behavior it promises to provide. Interfaces form a contract between
the class and the outside world, and this contract is enforced at build
time by the compiler. If your class claims to implement an interface,
all methods defined by that interface must appear in its source code
before the class will successfully compile.
An interface is a contract between a class and the outside world. When
a class implements an interface, it promises to provide the behavior
published by that interface. This section defines a simple interface and
explains the necessary changes for any class that implements it.

PACKAGE

A package is a namespace for organizing classes and interfaces in a
logical manner. Placing your code into packages makes large software
projects easier to manage. This section explains why this is useful, and
introduces you to the Application Programming Interface (API)
provided by the Java platform. A package is a namespace that
organizes a set of related classes and interfaces. Conceptually you can
think of packages as being similar to different folders on your
computer. You might keep HTML pages in one folder, images in
another, and scripts or applications in yet another. Because software
written in the Java programming language can be composed of
hundreds or thousands of individual classes, it makes sense to keep
things organized by placing related classes and interfaces into
packages. The Java platform provides an enormous class library (a set
of packages) suitable for use in your own applications. This library is
known as the "Application Programming Interface", or "API" for
short. Its packages represent the tasks most commonly associated with
general-purpose programming. For example, a String object contains
state and behavior for character strings; a File object allows a
programmer to easily create, delete, inspect, compare, or modify a file
on the filesystem; a Socket object allows for the creation and use of
network sockets; various GUI objects control buttons and checkboxes
and anything else related to graphical user interfaces. There are
literally thousands of classes to choose from. This allows you, the
programmer, to focus on the design of your particular application,
rather than the infrastructure required to make it work.

TandemBike. In the Java programming language, each class is
allowed
to have one direct super class, and each super class has the potential
for an unlimited number of subclasses:

A hierarchy of bicycle classes.

The syntax for creating a subclass is simple. At the beginning of your
class declaration, use the extends keyword, followed by the name of
the class to inherit from:

class MountainBike extends Bicycle {

 // new fields and methods defining a
mountain bike would go here

}

This gives MountainBike all the same fields and methods as Bicycle,
yet allows its code to focus exclusively on the features that make it
unique. This makes code for your subclasses easy to read. However,
you must take care to properly document the state and behavior that
each superclass defines, since that code will not appear in the source
file of each subclass.

INTERFACE

As you've already learned, objects define their interaction with the
outside world through the methods that they expose. Methods form
the object's interface with the outside world; the buttons on the front
of your television set, for example, are the interface between you and
the electrical wiring on the other side of its plastic casing. You press
the "power" button to turn the television on and off. In its most
common form, an interface is a group of related methods with empty
bodies. A bicycle's behavior, if specified as an interface, might
appear as follows:

SARVA EDUCATION (SITED) (Running- An I.T & Skill Advancement Training Programme) - 5 -

Visit us at: www.sarvaindia.com Licensed by Govt. of India ISO 9001:2008 Certified

CHAPTER - 2

JAVA FUNDAMENTALS

Because the Java VM is available on many different operating systems,
the same .class files are capable of running on Microsoft Windows, the
Solaris TM Operating System (Solaris OS), Linux, or Mac OS. Some
virtual machines, such as the Java HotSpot virtual machine, perform
additional steps at runtime to give your application a performance boost.
This include various tasks such as finding performance bottlenecks and
recompiling (to native code) frequently used sections of code.

Through the Java VM, the same application is capable of running on
multiple platforms.

The Java Platform
A platform is the hardware or software environment in which a program
runs. We've already mentioned some of the most popular platforms like
Microsoft Windows, Linux, Solaris OS, and Mac OS. Most platforms can
be described as a combination of the operating system and underlying
hardware. The Java platform differs from most other platforms in that it's
a software-only platform that runs on top of other hardware-based
platforms.

The Java platform has two components:

 The Java Virtual Machine
 The Java Application Programming Interface (API)

You've already been introduced to the Java Virtual Machine; it's the base
for the Java platform and is ported onto various hardware-based
platforms.

The API is a large collection of ready-made software components that
provide many useful capabilities. It is grouped into libraries of related

INTRODUCTION

Java is a programming language originally developed by James
Gosling at Sun Microsystems and released in 1995 as a core
component of Sun Microsystems' Java platform. The language
derives much of its syntax from C and C++ but has a simpler object
model and fewer low-level facilities. Java applications are typically
compiled to bytecode that can run on any Java virtual machine
(JVM) regardless of computer architecture.
The original and reference implementation Java compilers, virtual
machines, and class libraries were developed by Sun from 1995. As
of May 2007, in compliance with the specifications of the Java
Community Process, Sun made available most of their Java
technologies as free software under the GNU General Public
License. Others have also developed alternative implementations of
these Sun technologies, such as the GNU Compiler for Java and
GNU Classpath.
"Java" generally refers to a combination of three things: the Java
programming language (a high-level, object-oriented programming
language); the Java Virtual Machine (a high-performance virtual
machine that executes bytecodes on a specific computing platform,
typically abbreviated JVM); and the Java platform, a JVM running
compiled Java bytecodes, usually calling on a set of standard
libraries such as those provided by Java Standard Edition (SE) or
Enterprise Edition (EE). Though coupled by design, the language
does not imply the JVM, and vice versa. The Java programming
language is a high-level language that can be characterized by all of
the following buzzwords:

� Simple � Architecture neutral
� Object oriented � Portable
� Distributed � High performance
� Multithreaded � Robust

� Dynamic � Secure

In the Java programming language, all source code is first written in
plain text files ending with the .java extension. Those source files are
then compiled into .class files by the javac compiler. A .class file
does not contain code that is native to your processor; it instead
contains bytecodes — the machine language of the Java Virtual
Machine (Java VM). The java launcher tool then runs your
application with an instance of the Java Virtual Machine.

An overview of the software
development process.

SARVA EDUCATION (SITED) (Running- An I.T & Skill Advancement Training Programme) - 6 -

Visit us at: www.sarvaindia.com Licensed by Govt. of India ISO 9001:2008 Certified

classes and interfaces; these libraries are known as packages.

The API and Java Virtual Machine insulate the program from the underlying hardware.

As a platform-independent environment, the Java platform can be a bit slower than native code. However, advances in compiler and virtual
machine technologies are bringing performance close to that of native code without threatening portability.

The general-purpose, high-level Java programming language is a powerful software platform. Every full implementation of the Java platform gives
you the following features:

 Development Tools: The development tools provide everything you'll need for compiling, running, monitoring, debugging, and
documenting your applications. As a new developer, the main tools you'll be using are the javac compiler, the java launcher, and the
javadoc documentation tool.

 Application Programming Interface (API): The API provides the core functionality of the Java programming language. It offers a
wide array of useful classes ready for use in your own applications. It spans everything from basic objects, to networking and security, to
XML generation and database access, and more. The core API is very large; to get an overview of what it contains, consult the Java SE
Development Kit 6 (JDKTM 6) documentation.

 Deployment Technologies: The JDK software provides standard mechanisms such as the Java Web Start software and Java Plug-In
software for deploying your applications to end users.

 User Interface Toolkits: The Swing and Java 2D toolkits make it possible to create sophisticated Graphical User Interfaces (GUIs).
 Integration Libraries: Integration libraries such as the Java IDL API, JDBC API, Java Naming and Directory Interface ("J.N.D.I.")

API, Java RMI, and Java Remote Method Invocation over Internet Inter-ORB Protocol Technology (Java RMI-IIOP Technology) enable
database access and manipulation of remote objects.

We believe that Java technology will help you do the following:

 Get started quickly: Although the Java programming language is a powerful object-oriented language, it's easy to learn, especially for
programmers already familiar with C or C++.

 Write less code: Comparisons of program metrics (class counts, method counts, and so on) suggest that a program written in the Java
programming language can be four times smaller than the same program written in C++.

 Write better code: The Java programming language encourages good coding practices, and automatic garbage collection helps you
avoid memory leaks. Its object orientation, its JavaBeans component architecture, and its wide-ranging, easily extendible API let you
reuse existing, tested code and introduce fewer bugs.

 Develop programs more quickly: The Java programming language is simpler than C++, and as such, your development time could be
up to twice as fast when writing in it. Your programs will also require fewer lines of code.

 Avoid platform dependencies: You can keep your program portable by avoiding the use of libraries written in other languages.
 Write once, run anywhere: Because applications written in the Java programming language are compiled into machine-independent

bytecodes, they run consistently on any Java platform.
 Distribute software more easily: With Java Web Start software, users will be able to launch your applications with a single click of the

mouse. An automatic version check at startup ensures that users are always up to date with the latest version of your software. If an
update is available, the Java Web Start software will automatically update their installation.

SARVA EDUCATION (SITED) (Running- An I.T & Skill Advancement Training Programme) - 7 -

Visit us at: www.sarvaindia.com Licensed by Govt. of India ISO 9001:2008 Certified

CHAPTER - 3

VARIABLES

As you learned in the previous lesson, an object stores its state in fields.

int cadence = 0;
int speed = 0;
int gear = 1;

The Java programming language defines the following kinds of variables:

 Instance Variables (Non-Static Fields) Technically speaking, objects store their individual states in "non-static fields", that is, fields
declared without the static keyword. Non-static fields are also known as instance variables because their values are unique to each instance of a
class (to each object, in other words); the current Speed of one bicycle is independent from the current Speed of another.
 Class Variables (Static Fields) A class variable is any field declared with the static modifier; this tells the compiler that there is exactly
one copy of this variable in existence, regardless of how many times the class has been instantiated. A field defining the number of gears for a
particular kind of bicycle could be marked as static since conceptually the same number of gears will apply to all instances. The code static int
numGears = 6; would create such a static field. Additionally, the keyword final could be added to indicate that the number of gears will never
change.
 Local Variables Similar to how an object stores its state in fields, a method will often store its temporary state in local variables. The
syntax for declaring a local variable is similar to declaring a field (for example, int count = 0;). There is no special keyword designating a variable
as local; that determination comes entirely from the location in which the variable is declared — which is between the opening and closing braces
of a method. As such, local variables are only visible to the methods in which they are declared; they are not accessible from the rest of the class.
 Parameters You've already seen examples of parameters, both in the Bicycle class and in the main method of the "Hello World!"
application. Recall that the signature for the main method is public static void main(String[] args). Here, the args variable is the parameter to this
method. The important thing to remember is that parameters are always classified as "variables" not "fields". This applies to other parameter-
accepting constructs as well (such as constructors and exception handlers) that you'll learn about later in the tutorial.

Having said that, the remainder of this tutorial uses the following general guidelines when discussing fields and variables. If we are talking about
"fields in general" (excluding local variables and parameters), we may simply say "fields". If the discussion applies to "all of the above", we may
simply say "variables". If the context calls for a distinction, we will use specific terms (static field, local variables, etc.) as appropriate. You may
also occasionally see the term "member" used as well. A type's fields, methods, and nested types are collectively called its members.

NAMING

Every programming language has its own set of rules and conventions for the kinds of names that you're allowed to use, and the Java programming
language is no different. The rules and conventions for naming your variables can be summarized as follows:

 Variable names are case-sensitive. A variable's name can be any legal identifier — an unlimited-length sequence of Unicode letters and
digits, beginning with a letter, the dollar sign "$", or the underscore character "_". The convention, however, is to always begin your variable names
with a letter, not "$" or "_". Additionally, the dollar sign character, by convention, is never used at all. You may find some situations where auto-
generated names will contain the dollar sign, but your variable names should always avoid using it. A similar convention exists for the underscore
character; while it's technically legal to begin your variable's name with "_", this practice is discouraged. White space is not permitted.
 Subsequent characters may be letters, digits, dollar signs, or underscore characters. Conventions (and common sense) apply to this rule
as well. When choosing a name for your variables, use full words instead of cryptic abbreviations. Doing so will make your code easier to read and
understand. In many cases it will also make your code self-documenting; fields named cadence, speed, and gear, for example, are much more
intuitive than abbreviated versions, such as s, c, and g. Also keep in mind that the name you choose must not be a keyword or reserved word.
 If the name you choose consists of only one word, spell that word in all lowercase letters. If it consists of more than one word, capitalize
the first letter of each subsequent word. The names gearRatio and currentGear are prime examples of this convention. If your variable stores a
constant value, such as static final int NUM_GEARS = 6, the convention changes slightly, capitalizing every letter and separating subsequent
words with the underscore character. By convention, the underscore character is never used elsewhere.

PRIMITIVE DATA TYPES

The Java programming language is strongly-typed, which means that all variables must first be declared before they can be used. This involves
stating the variable's type and name, as you've already seen: int gear = 1;

SARVA EDUCATION (SITED) (Running- An I.T & Skill Advancement Training Programme) - 8 -

Visit us at: www.sarvaindia.com Licensed by Govt. of India ISO 9001:2008 Certified

In addition to the eight primitive data types listed above, the Java
programming language also provides special support for character strings
via the java.lang.String class. Enclosing your character string within
double quotes will automatically create a new String object; for example,
String s = "this is a string";. String objects are immutable, which means
that once created, their values cannot be changed. The String class is not
technically a primitive data type, but considering the special support
given to it by the language, you'll probably tend to think of it as such.

DEFAULT VALUES
It's not always necessary to assign a value when a field is declared. Fields
that are declared but not initialized will be set to a reasonable default by
the compiler. Generally speaking, this default will be zero or null,
depending on the data type. Relying on such default values, however, is
generally considered bad programming style.

The following chart summarizes the default values for the above data
types.

Data Type Default Value (for fields)
byte 0

short 0
int 0
long 0L

float 0.0f
double 0.0d

char '\u0000'
String (or any object) null
boolean false

Local variables are slightly different; the compiler never assigns a default
value to an uninitialized local variable. If you cannot initialize your local
variable where it is declared, make sure to assign it a value before you
attempt to use it. Accessing an uninitialized local variable will result in a
compile-time error.

LITERALS

You may have noticed that the new keyword isn't used when initializing
a variable of a primitive type. Primitive types are special data types built
into the language; they are not objects created from a class. A literal is
the source code representation of a fixed value; literals are represented
directly in your code without requiring computation. As shown below,
it's possible to assign a literal to a variable of a primitive type:

 boolean result = true;
 char capitalC = 'C';
 byte b = 100;
 short s = 10000;
 int i = 100000;

The integral types (byte, short, int, and long) can be expressed using
decimal, octal, or hexadecimal number systems. Decimal is the number
system you already use every day; it's based on 10 digits, numbered 0
through 9. The octal number system is base 8, consisting of the digits 0

Doing so tells your program that a field named "gear" exists, holds
numerical data, and has an initial value of "1". A variable's data type
determines the values it may contain, plus the operations that may be
performed on it. In addition to int, the Java programming language
supports seven other primitive data types. A primitive type is
predefined by the language and is named by a reserved keyword.
Primitive values do not share state with other primitive values. The
eight primitive data types supported by the Java programming
language are:

 byte: The byte data type is an 8-bit signed two's complement
integer. It has a minimum value of -128 and a maximum value of
127 (inclusive). The byte data type can be useful for saving
memory in large arrays, where the memory savings actually
matters. They can also be used in place of int where their limits
help to clarify your code; the fact that a variable's range is limited
can serve as a form of documentation.

 short: The short data type is a 16-bit signed two's complement
integer. It has a minimum value of -32,768 and a maximum value
of 32,767 (inclusive). As with byte, the same guidelines apply:
you can use a short to save memory in large arrays, in situations
where the memory savings actually matters.

 int: The int data type is a 32-bit signed two's complement integer.
It has a minimum value of -2,147,483,648 and a maximum value
of 2,147,483,647 (inclusive). For integral values, this data type is
generally the default choice unless there is a reason (like the
above) to choose something else. This data type will most likely
be large enough for the numbers your program will use, but if you
need a wider range of values, use long instead.

 long: The long data type is a 64-bit signed two's complement
integer. It has a minimum value of -9,223,372,036,854,775,808
and a maximum value of 9,223,372,036,854,775,807 (inclusive).
Use this data type when you need a range of values wider than
those provided by int.

 float: The float data type is a single-precision 32-bit IEEE 754
floating point. Its range of values is beyond the scope of this
discussion, but is specified in section 4.2.3 of the Java Language
Specification. As with the recommendations for byte and short,
use a float (instead of double) if you need to save memory in large
arrays of floating point numbers. This data type should never be
used for precise values, such as currency. For that, you will need
to use the java.math.BigDecimal class instead. Numbers and
Strings covers BigDecimal and other useful classes provided by
the Java platform.

 double: The double data type is a double-precision 64-bit IEEE
754 floating point. Its range of values is beyond the scope of this
discussion, but is specified in section 4.2.3 of the Java Language
Specification. For decimal values, this data type is generally the
default choice. As mentioned above, this data type should never be
used for precise values, such as currency.

 boolean: The boolean data type has only two possible values: true
and false. Use this data type for simple flags that track true/false
conditions. This data type represents one bit of information, but its
"size" isn't something that's precisely defined.

 char: The char data type is a single 16-bit Unicode character. It
has a minimum value of '\u0000' (or 0) and a maximum value of
'\uffff' (or 65,535 inclusive).

SARVA EDUCATION (SITED) (Running- An I.T & Skill Advancement Training Programme) - 9 -

Visit us at: www.sarvaindia.com Licensed by Govt. of India ISO 9001:2008 Certified

through 7. The hexadecimal system is base 16, whose digits are the numbers 0 through 9 and the letters A through F. For general-purpose
programming, the decimal system is likely to be the only number system you'll ever use. However, if you need octal or hexadecimal, the following
example shows the correct syntax. The prefix 0 indicates octal, whereas 0x indicates hexadecimal.

 int decVal = 26; // The number 26, in decimal
 int octVal = 032; // The number 26, in octal
 int hexVal = 0x1a; // The number 26, in hexadecimal

The floating point types (float and double) can also be expressed using E or e (for scientific notation), F or f (32-bit float literal) and D or d (64-bit
double literal; this is the default and by convention is omitted).

 double d1 = 123.4;
 double d2 = 1.234e2; // same value as d1, but in scientific notation
 float f1 = 123.4f;

Literals of types char and String may contain any Unicode (UTF-16) characters. If your editor and file system allow it, you can use such characters
directly in your code. If not, you can use a "Unicode escape" such as '\u0108' (capital C with circumflex), or "S\u00ED se\u00F1or" (Sí Señor in
Spanish). Always use 'single quotes' for char literals and "double quotes" for String literals. Unicode escape sequences may be used elsewhere in a
program (such as in field names, for example), not just in char or String literals. The Java programming language also supports a few special escape
sequences for char and String literals: \b (backspace), \t (tab), \n (line feed), \f (form feed), \r (carriage return), \" (double quote), \' (single quote),
and \\ (backslash).

There's also a special null literal that can be used as a value for any reference type. null may be assigned to any variable, except variables of
primitive types. There's little you can do with a null value beyond testing for its presence. Therefore, null is often used in programs as a marker to
indicate that some object is unavailable. Finally, there's also a special kind of literal called a class literal, formed by taking a type name and
appending ".class"; for example, String.class. This refers to the object (of type Class) that represents the type itself.

ARRAYS

An array is a container object that holds a fixed number of values of a single type. The length of an array is established when the array is created.
After creation, its length is fixed. You've seen an example of arrays already, in the main method of the "Hello World!" application. This section
discusses arrays in greater detail.

An array of ten elements

Each item in an array is called an element, and each element is accessed by its numerical index. As shown in the above illustration, numbering
begins with 0. The 9th element, for example, would therefore be accessed at index 8.

The following program, ArrayDemo, creates an array of integers, puts some values in it, and prints each value to standard output.

class ArrayDemo {
 public static void main(String[] args) {
 int[] anArray; // declares an array of integers

 anArray = new int[10]; // allocates memory for 10 integers

 anArray[0] = 100; // initialize first element
 anArray[1] = 200; // initialize second element
 anArray[2] = 300; // etc.
 anArray[3] = 400;
 anArray[4] = 500;
 anArray[5] = 600;
 anArray[6] = 700;

SARVA EDUCATION (SITED) (Running- An I.T & Skill Advancement Training Programme) - 10 -

Visit us at: www.sarvaindia.com Licensed by Govt. of India ISO 9001:2008 Certified

 anArray[7] = 800;
 anArray[8] = 900;
 anArray[9] = 1000;

 System.out.println("Element at index 0: " + anArray[0]);
 System.out.println("Element at index 1: " + anArray[1]);
 System.out.println("Element at index 2: " + anArray[2]);
 System.out.println("Element at index 3: " + anArray[3]);
 System.out.println("Element at index 4: " + anArray[4]);
 System.out.println("Element at index 5: " + anArray[5]);
 System.out.println("Element at index 6: " + anArray[6]);
 System.out.println("Element at index 7: " + anArray[7]);
 System.out.println("Element at index 8: " + anArray[8]);
 System.out.println("Element at index 9: " + anArray[9]);
 }
}
The output from this program is:
Element at index 0: 100
Element at index 1: 200
Element at index 2: 300
Element at index 3: 400
Element at index 4: 500
Element at index 5: 600
Element at index 6: 700
Element at index 7: 800
Element at index 8: 900
Element at index 9: 1000

In a real-world programming situation, you'd probably use one of the supported looping constructs to iterate through each element of the array,
rather than write each line individually as shown above. However, this example clearly illustrates the array syntax.

Declaring a Variable to Refer to an Array
The above program declares anArray with the following line of code:

 int[] anArray; // declares an array of integers

Like declarations for variables of other types, an array declaration has two components: the array's type and the array's name. An array's type is
written as type[], where type is the data type of the contained elements; the square brackets are special symbols indicating that this variable holds an
array. The size of the array is not part of its type (which is why the brackets are empty). An array's name can be anything you want, provided that it
follows the rules and conventions as previously discussed in the naming section. As with variables of other types, the declaration does not actually
create an array — it simply tells the compiler that this variable will hold an array of the specified type.

Similarly, you can declare arrays of other types:

byte[] anArrayOfBytes;
short[] anArrayOfShorts;
long[] anArrayOfLongs;
float[] anArrayOfFloats;
double[] anArrayOfDoubles;
boolean[] anArrayOfBooleans;
char[] anArrayOfChars;
String[] anArrayOfStrings;

You can also place the square brackets after the array's name: float anArrayOfFloats[]; // this form is discouraged
However, convention discourages this form; the brackets identify the array type and should appear with the type designation.

Creating, Initializing, and Accessing an Array
One way to create an array is with the new operator. The next statement in the ArrayDemo program allocates an array with enough memory for ten
integer elements and assigns the array to the anArray variable.

anArray = new int[10]; // create an array of integers

SARVA EDUCATION (SITED) (Running- An I.T & Skill Advancement Training Programme) - 11 -

Visit us at: www.sarvaindia.com Licensed by Govt. of India ISO 9001:2008 Certified

opying Arrays

Copying Arrays
The System class has an arraycopy method that you can use to
efficiently copy data from one array into another:

public static void arraycopy(Object src,
 int srcPos,
 Object dest,
 int destPos,
 int length)

The two Object arguments specify the array to copy from and the array
to copy to. The three int arguments specify the starting position in the
source array, the starting position in the destination array, and the
number of array elements to copy. The following program,
ArrayCopyDemo, declares an array of char elements, spelling the
word "decaffeinated". It uses arraycopy to copy a subsequence of array
components into a second array:

class ArrayCopyDemo {
 public static void main(String[] args) {
 char[] copyFrom = { 'd', 'e', 'c', 'a', 'f', 'f', 'e',
 'i', 'n', 'a', 't', 'e', 'd' };
 char[] copyTo = new char[7];

 System.arraycopy(copyFrom, 2, copyTo, 0, 7);
 System.out.println(new String(copyTo));
 }
}

The output from this program is:

caffein

Conclusion of Variables

The Java programming language uses both "fields" and "variables" as
part of its terminology. Instance variables (non-static fields) are unique
to each instance of a class. Class variables (static fields) are fields
declared with the static modifier; there is exactly one copy of a class
variable, regardless of how many times the class has been instantiated.
Local variables store temporary state inside a method. Parameters are
variables that provide extra information to a method; both local
variables and parameters are always classified as "variables" (not
"fields"). When naming your fields or variables, there are rules and
conventions that you should (or must) follow.
The eight primitive data types are: byte, short, int, long, float, double,
boolean, and char. The java.lang.String class represents character
strings. The compiler will assign a reasonable default value for fields
of the above types; for local variables, a default value is never
assigned. A literal is the source code representation of a fixed value.
An array is a container object that holds a fixed number of values of a
single type. The length of an array is established when the array is
created. After creation, its length is fixed.

If this statement were missing, the compiler would print an error like
the following, and compilation would fail:
ArrayDemo.java:4: Variable anArray may not have been
initialized.

The next few lines assign values to each element of the array:

anArray[0] = 100; // initialize first element
anArray[1] = 200; // initialize second element
anArray[2] = 300; // etc.

Each array element is accessed by its numerical index:

System.out.println("Element 1 at index 0: " +
anArray[0]);
System.out.println("Element 2 at index 1: " +
anArray[1]);
System.out.println("Element 3 at index 2: " +
anArray[2]);

Alternatively, you can use the shortcut syntax to create and initialize
an array:

int[] anArray = {100, 200, 300, 400, 500, 600,
700, 800, 900, 1000};

Here the length of the array is determined by the number of values
provided between { and }.
You can also declare an array of arrays (also known as a
multidimensional array) by using two or more sets of square
brackets, such as String[][] names. Each element, therefore, must be
accessed by a corresponding number of index values.
In the Java programming language, a multidimensional array is
simply an array whose components are themselves arrays. This is
unlike arrays in C or Fortran. A consequence of this is that the rows
are allowed to vary in length, as shown in the following
MultiDimArrayDemo program:

class MultiDimArrayDemo {
 public static void main(String[] args) {
 String[][] names = {{"Mr. ", "Mrs. ", "Ms. "},
 {"Smith", "Jones"}};
 System.out.println(names[0][0] + names[1][0]);
//Mr. Smith
 System.out.println(names[0][2] + names[1][1]);
//Ms. Jones
 }
}

The output from this program is:
 Mr. Smith
 Ms. Jones

Finally, you can use the built-in length property to determine the size
of any array. The code System.out.println(anArray.length);
will print the array's size to standard output.

SARVA EDUCATION (SITED) (Running- An I.T & Skill Advancement Training Programme) - 12 -

Visit us at: www.sarvaindia.com Licensed by Govt. of India ISO 9001:2008 Certified

CHAPTER - 4

OPERATORS

In general-purpose programming, certain operators tend to appear
more frequently than others; for example, the assignment operator "="
is far more common than the unsigned right shift operator ">>>". With
that in mind, the following discussion focuses first on the operators
that you're most likely to use on a regular basis, and ends focusing on
those that are less common. Each discussion is accompanied by
sample code that you can compile and run. Studying its output will
help reinforce what you've just learned.

ASSIGNMENT, ARITHMETIC, AND UNARY OPERATORS

The Simple Assignment Operator

One of the most common operators that you'll encounter is the simple
assignment operator "=". You saw this operator in the Bicycle class; it
assigns the value on its right to the operand on its left:

 int cadence = 0;
 int speed = 0;
 int gear = 1;

This operator can also be used on objects to assign object references.

The Arithmetic Operators

The Java programming language provides operators that perform
addition, subtraction, multiplication, and division. There's a good
chance you'll recognize them by their counterparts in basic
mathematics. The only symbol that might look new to you is "%",
which divides one operand by another and returns the remainder as its
result.

+ additive operator (also used for String
concatenation)

- subtraction operator
* multiplication operator
/ division operator
% remainder operator

The following program, ArithmeticDemo, tests the arithmetic
operators.

class ArithmeticDemo {

 public static void main (String[] args){

 int result = 1 + 2; // result is now 3
 System.out.println(result);

 result = result - 1; // result is now 2
 System.out.println(result);

 result = result * 2; // result is now 4

INTRODUCTION

Now that you've learned how to declare and initialize variables, you
probably want to know how to do something with them. Learning the
operators of the Java programming language is a good place to start.
Operators are special symbols that perform specific operations on
one, two, or three operands, and then return a result.

As we explore the operators of the Java programming language, it
may be helpful for you to know ahead of time which operators have
the highest precedence. The operators in the following table are listed
according to precedence order. The closer to the top of the table an
operator appears, the higher its precedence. Operators with higher
precedence are evaluated before operators with relatively lower
precedence. Operators on the same line have equal precedence.
When operators of equal precedence appear in the same expression, a
rule must govern which is evaluated first. All binary operators except
for the assignment operators are evaluated from left to right;
assignment operators are evaluated right to left.

Operator Precedence

Operators Precedence

postfix expr++ expr--

unary ++expr --expr +expr -expr ~ !

multiplicative * / %

additive + -

shift << >> >>>

relational < > <= >= instanceof

equality == !=

bitwise AND &

bitwise exclusive OR ^

bitwise inclusive OR |

logical AND &&

logical OR ||

ternary ? :

assignment = += -= *= /= %= &= ^= |=
<<= >>= >>>=

SARVA EDUCATION (SITED) (Running- An I.T & Skill Advancement Training Programme) - 13 -

Visit us at: www.sarvaindia.com Licensed by Govt. of India ISO 9001:2008 Certified

The increment/decrement operators can be applied before (prefix) or
after (postfix) the operand. The code result++; and ++result; will both
end in result being incremented by one. The only difference is that the
prefix version (++result) evaluates to the incremented value, whereas
the postfix version (result++) evaluates to the original value. If you are
just performing a simple increment/decrement, it doesn't really matter
which version you choose. But if you use this operator in part of a
larger expression, the one that you choose may make a significant
difference. The following program, PrePostDemo, illustrates the
prefix/postfix unary increment operator:

class PrePostDemo {
 public static void main(String[] args){
 int i = 3;
 i++;
 System.out.println(i); // "4"
 ++i;
 System.out.println(i); // "5"
 System.out.println(++i); // "6"
 System.out.println(i++); // "6"
 System.out.println(i); // "7"
 }
}

EQUALITY, RELATIONAL, AND CONDITIONAL
OPERATORS

The Equality and Relational Operators

The equality and relational operators determine if one operand is
greater than, less than, equal to, or not equal to another operand. The
majority of these operators will probably look familiar to you as well.
Keep in mind that you must use "==", not "=", when testing if two
primitive values are equal.

== equal to
!= not equal to
> greater than
>= greater than or equal to
< less than
<= less than or equal to

The following program, ComparisonDemo, tests the comparison
operators:

class ComparisonDemo {

 public static void main(String[] args){
 int value1 = 1;
 int value2 = 2;
 if(value1 == value2) System.out.println("value1 ==
value2");
 if(value1 != value2) System.out.println("value1 != value2");
 if(value1 > value2) System.out.println("value1 > value2");
 if(value1 < value2) System.out.println("value1 < value2");
 if(value1 <= value2) System.out.println("value1 <=
value2");
 }
}

Output:
value1 != value2
value1 < value2
value1 <= value2

 System.out.println(result);

 result = result / 2; // result is now 2
 System.out.println(result);

 result = result + 8; // result is now 10
 result = result % 7; // result is now 3
 System.out.println(result);

 }
}

You can also combine the arithmetic operators with the simple
assignment operator to create compound assignments. For example,
x+=1; and x=x+1; both increment the value of x by 1.

The + operator can also be used for concatenating (joining) two
strings together, as shown in the following ConcatDemo program:

class ConcatDemo {
 public static void main(String[] args){
 String firstString = "This is";
 String secondString = " a concatenated string.";
 String thirdString = firstString+secondString;
 System.out.println(thirdString);
 }
}

By the end of this program, the variable thirdString contains "This is
a concatenated string.", which gets printed to standard output.

THE UNARY OPERATORS

The unary operators require only one operand; they perform various
operations such as incrementing/decrementing a value by one,
negating an expression, or inverting the value of a boolean.

+ Unary plus operator; indicates positive value (numbers are
positive without this, however)

- Unary minus operator; negates an expression
++ Increment operator; increments a value by 1
-- Decrement operator; decrements a value by 1
! Logical complement operator; inverts the value of a boolean

The following program, UnaryDemo, tests the unary operators:

class UnaryDemo {

 public static void main(String[] args){
 int result = +1; // result is now 1
 System.out.println(result);
 result--; // result is now 0
 System.out.println(result);
 result++; // result is now 1
 System.out.println(result);
 result = -result; // result is now -1
 System.out.println(result);
 boolean success = false;
 System.out.println(success); // false
 System.out.println(!success); // true
 }
}

SARVA EDUCATION (SITED) (Running- An I.T & Skill Advancement Training Programme) - 14 -

Visit us at: www.sarvaindia.com Licensed by Govt. of India ISO 9001:2008 Certified

The Type Comparison Operator instanceof

The instanceof operator compares an object to a specified type. You
can use it to test if an object is an instance of a class, an instance of a
subclass, or an instance of a class that implements a particular
interface.

The following program, InstanceofDemo, defines a parent class
(named Parent), a simple interface (named MyInterface), and a child
class (named Child) that inherits from the parent and implements the
interface.

class InstanceofDemo {
 public static void main(String[] args) {

 Parent obj1 = new Parent();
 Parent obj2 = new Child();

 System.out.println("obj1 instanceof Parent: " + (obj1 instanceof Parent));
 System.out.println("obj1 instanceof Child: " + (obj1 instanceof Child));
 System.out.println("obj1 instanceof MyInterface: " + (obj1 instanceof
MyInterface));
 System.out.println("obj2 instanceof Parent: " + (obj2 instanceof Parent));
 System.out.println("obj2 instanceof Child: " + (obj2 instanceof Child));
 System.out.println("obj2 instanceof MyInterface: " + (obj2 instanceof
MyInterface));
 }
}

class Parent{}
class Child extends Parent implements MyInterface{}
interface MyInterface{}
Output:
obj1 instanceof Parent: true
obj1 instanceof Child: false
obj1 instanceof MyInterface: false
obj2 instanceof Parent: true
obj2 instanceof Child: true
obj2 instanceof MyInterface: true

When using the instanceof operator, keep in mind that null is not an
instance of anything.

BITWISE AND BIT SHIFT OPERATORS

The Java programming language also provides operators that perform
bitwise and bit shift operations on integral types. The operators
discussed in this section are less commonly used. Therefore, their
coverage is brief; the intent is to simply make you aware that these
operators exist.

The unary bitwise complement operator "~" inverts a bit pattern; it can
be applied to any of the integral types, making every "0" a "1" and
every "1" a "0". For example, a byte contains 8 bits; applying this
operator to a value whose bit pattern is "00000000" would change its
pattern to "11111111".

The signed left shift operator "<<" shifts a bit pattern to the left, and
the signed right shift operator ">>" shifts a bit pattern to the right. The
bit pattern is given by the left-hand operand, and the number of
positions to shift by the right-hand operand. The unsigned right shift
operator ">>>" shifts a zero into the leftmost position, while the
leftmost position after ">>" depends on sign extension.

THE CONDITIONAL OPERATORS

The && and || operators perform Conditional-AND and Conditional-
OR operations on two boolean expressions.

These operators exhibit "short-circuiting" behavior, which means that
the second operand is evaluated only if needed.

&& Conditional-AND
|| Conditional-OR

The following program, ConditionalDemo1, tests these operators:

class ConditionalDemo1 {
 public static void main(String[] args){
 int value1 = 1;
 int value2 = 2;
 if((value1 == 1) && (value2 == 2))
System.out.println("value1 is 1 AND value2 is 2");
 if((value1 == 1) || (value2 == 1))
System.out.println("value1 is 1 OR value2 is 1");

 }
}

Another conditional operator is ?:, which can be thought of as
shorthand for an if-then-else statement This operator is also known
as the ternary operator because it uses three operands.

In the following example, this operator should be read as: "If
someCondition is true, assign the value of value1 to result.
Otherwise, assign the value of value2 to result."

The following program, ConditionalDemo2, tests the ?: operator:

class ConditionalDemo2 {

 public static void main(String[] args){
 int value1 = 1;
 int value2 = 2;
 int result;
 boolean someCondition = true;
 result = someCondition ? value1 : value2;

 System.out.println(result);

 }
}

Because someCondition is true, this program prints "1" to the screen.
Use the ?: operator instead of an if-then-else statement if it makes
your code more readable;

for example, when the expressions are compact and without side-
effects (such as assignments).

SARVA EDUCATION (SITED) (Running- An I.T & Skill Advancement Training Programme) - 15 -

Visit us at: www.sarvaindia.com Licensed by Govt. of India ISO 9001:2008 Certified

EQUALITY AND RELATIONAL OPERATORS
== Equal to
!= Not equal to
> Greater than
>= Greater than or equal to
< Less than
<= Less than or equal to

CONDITIONAL OPERATORS
&& Conditional-AND
|| Conditional-OR
?: Ternary (shorthand for if-then-else statement)

TYPE COMPARISON OPERATOR
Instance of Compares an object to a specified type

BITWISE AND BIT SHIFT OPERATORS
~ Unary bitwise complement
<< Signed left shift
>> Signed right shift
>>> Unsigned right shift
& Bitwise AND
^ Bitwise exclusive OR
| Bitwise inclusive OR

__

The bitwise & operator performs a bitwise AND operation.

The bitwise ^ operator performs a bitwise exclusive OR operation.

The bitwise | operator performs a bitwise inclusive OR operation.

The following program, BitDemo, uses the bitwise AND operator to
print the number "2" to standard output.

class BitDemo {
 public static void main(String[] args) {
 int bitmask = 0x000F;
 int val = 0x2222;
 System.out.println(val & bitmask); // prints "2"
 }
}

SUMMARY OF OPERATORS

The following quick reference summarizes the operators supported
by the Java programming language.
Simple Assignment Operator
= Simple assignment operator

ARITHMETIC OPERATORS

+ Additive operator (also used for String concatenation)
- Subtraction operator
* Multiplication operator
/ Division operator
% Remainder operator

UNARY OPERATORS
+ Unary plus operator; indicates positive value (numbers
are positive without this, however)
- Unary minus operator; negates an expression
++ Increment operator; increments a value by 1
-- Decrement operator; decrements a value by 1
! Logical compliment operator; inverts the value of a
boolean

SARVA EDUCATION (SITED) (Running- An I.T & Skill Advancement Training Programme) - 16 -

Visit us at: www.sarvaindia.com Licensed by Govt. of India ISO 9001:2008 Certified

CHAPTER - 5

EXPRESSIONS, STATEMENTS, AND BLOCKS

STATEMENTS

Statements are roughly equivalent to sentences in natural languages.
A statement forms a complete unit of execution. The following
types of expressions can be made into a statement by terminating
the expression with a semicolon (;).

 Assignment expressions
 Any use of ++ or --
 Method invocations
 Object creation expressions

Such statements are called expression statements. Here are some
examples of expression statements.

aValue = 8933.234; // assignment statement
aValue++; // increment statement
System.out.println("Hello World!"); // method invocation statement
Bicycle myBike = new Bicycle(); // object creation statement

In addition to expression statements, there are two other kinds of
statements: declaration statements and control flow statements. A
declaration statement declares a variable. You've seen many
examples of declaration statements already:
 double aValue = 8933.234; //declaration statement
Finally, control flow statements regulate the order in which
statements get executed.

BLOCKS
A block is a group of zero or more statements between balanced
braces and can be used anywhere a single statement is allowed. The
following example, BlockDemo, illustrates the use of blocks:

class BlockDemo {
 public static void main(String[] args) {
 boolean condition = true;
 if (condition) { // begin block 1
 System.out.println("Condition is true.");
 } // end block one
 else { // begin block 2
 System.out.println("Condition is false.");
 } // end block 2
 }
}

INTRODUCTION

Now that you understand variables and operators, it's time to learn
about expressions, statements, and blocks. Operators may be used in
building expressions, which compute values; expressions are the core
components of statements; statements may be grouped into blocks.

EXPRESSIONS
An expression is a construct made up of variables, operators, and
method invocations, which are constructed according to the syntax of
the language, that evaluates to a single value. You've already seen
examples of expressions, illustrated in bold below:

 int cadence = 0;
 anArray[0] = 100;
 System.out.println("Element 1 at index 0: " + anArray[0]);

 int result = 1 + 2; // result is now 3
 if(value1 == value2) System.out.println("value1 == value2");

The data type of the value returned by an expression depends on the
elements used in the expression. The expression cadence = 0 returns an
int because the assignment operator returns a value of the same data
type as its left-hand operand; in this case, cadence is an int. As you can
see from the other expressions, an expression can return other types of
values as well, such as boolean or String.
The Java programming language allows you to construct compound
expressions from various smaller expressions as long as the data type
required by one part of the expression matches the data type of the
other. Here's an example of a compound expression: 1 * 2 * 3
In this particular example, the order in which the expression is
evaluated is unimportant because the result of multiplication is
independent of order; the outcome is always the same, no matter in
which order you apply the multiplications. However, this is not true of
all expressions. For example, the following expression gives different
results, depending on whether you perform the addition or the division
operation first:
 x + y /100// ambiguous
You can specify exactly how an expression will be evaluated using
balanced parenthesis: (and). For example, to make the previous
expression unambiguous, you could write the following: (x + y) /100//
unambiguous, recommended
If you don't explicitly indicate the order for the operations to be
performed, the order is determined by the precedence assigned to the
operators in use within the expression. Operators that have a higher
precedence get evaluated first. For example, the division operator has a
higher precedence than does the addition operator. Therefore, the
following two statements are equivalent:
 x + y / 100
 x + (y / 100) // unambiguous, recommended
When writing compound expressions, be explicit and indicate with
parentheses which operators should be evaluated first. This practice
makes code easier to read and to maintain.

SARVA EDUCATION (SITED) (Running- An I.T & Skill Advancement Training Programme) - 17 -

Visit us at: www.sarvaindia.com Licensed by Govt. of India ISO 9001:2008 Certified

CHAPTER - 6

CONTROL FLOW STATEMENTS

void applyBrakes(){
 if (isMoving) {
 currentSpeed--;
 } else {
 System.err.println("The bicycle has already stopped!");
 }
}

The following program, IfElseDemo, assigns a grade based on the
value of a test score: an A for a score of 90% or above, a B for a score
of 80% or above, and so on.

class IfElseDemo {
 public static void main(String[] args) {

 int testscore = 76;
 char grade;

 if (testscore >= 90) {
 grade = 'A';
 } else if (testscore >= 80) {
 grade = 'B';
 } else if (testscore >= 70) {
 grade = 'C';
 } else if (testscore >= 60) {
 grade = 'D';
 } else {
 grade = 'F';
 }
 System.out.println("Grade = " + grade);
 }
}

The output from the program is:

 Grade = C

You may have noticed that the value of testscore can satisfy more than
one expression in the compound statement: 76 >= 70 and 76 >= 60.
However, once a condition is satisfied, the appropriate statements are
executed (grade = 'C';) and the remaining conditions are not evaluated.

THE SWITCH STATEMENT

Unlike if-then and if-then-else, the switch statement allows for any
number of possible execution paths.

A switch works with the byte, short, char, and int primitive data types.
It also works with enumerated types and a few special classes that
"wrap" certain primitive types: Character, Byte, Short, and Integer

The following program, SwitchDemo, declares an int named month
whose value represents a month out of the year.

The program displays the name of the month, based on the value of
month, using the switch statement.

INTRODUCTION

The statements inside your source files are generally executed from
top to bottom, in the order that they appear. Control flow statements,
however, break up the flow of execution by employing decision
making, looping, and branching, enabling your program to
conditionally execute particular blocks of code. This section
describes the decision-making statements (if-then, if-then-else,
switch), the looping statements (for, while, do-while), and the
branching statements (break, continue, return) supported by the Java
programming language.

THE IF-THEN AND IF-THEN-ELSE STATEMENTS

The if-then Statement
The if-then statement is the most basic of all the control flow
statements. It tells your program to execute a certain section of code
only if a particular test evaluates to true.
For example, the Bicycle class could allow the brakes to decrease
the bicycle's speed only if the bicycle is already in motion. One
possible implementation of the applyBrakes method could be as
follows:

void applyBrakes(){
 if (isMoving){ // the "if" clause: bicycle must be moving
 currentSpeed--; // the "then" clause: decrease current

speed
 }
}

If this test evaluates to false (meaning that the bicycle is not in
motion), control jumps to the end of the if-then statement.
In addition, the opening and closing braces are optional, provided
that the "then" clause contains only one statement:

void applyBrakes(){
 if (isMoving) currentSpeed--; // same as above, but without

braces
}

Deciding when to omit the braces is a matter of personal taste.
Omitting them can make the code more brittle.
If a second statement is later added to the "then" clause, a common
mistake would be forgetting to add the newly required braces. The
compiler cannot catch this sort of error; you'll just get the wrong
results.

The if-then-else Statement
The if-then-else statement provides a secondary path of execution
when an "if" clause evaluates to false. You could use an if-then-else
statement in the applyBrakes method to take some action if the
brakes are applied when the bicycle is not in motion.
In this case, the action is to simply print an error message stating that
the bicycle has already stopped.

SARVA EDUCATION (SITED) (Running- An I.T & Skill Advancement Training Programme) - 18 -

Visit us at: www.sarvaindia.com Licensed by Govt. of India ISO 9001:2008 Certified

class SwitchDemo2 {
 public static void main(String[] args) {

 int month = 2;
 int year = 2000;
 int numDays = 0;

 switch (month) {
 case 1:
 case 3:
 case 5:
 case 7:
 case 8:
 case 10:
 case 12:
 numDays = 31;
 break;
 case 4:
 case 6:
 case 9:
 case 11:
 numDays = 30;
 break;
 case 2:
 if (((year % 4 == 0) && !(year % 100 == 0))
 || (year % 400 == 0))
 numDays = 29;
 else
 numDays = 28;
 break;
 default:
 System.out.println("Invalid month.");
 break;
 }
 System.out.println("Number of Days = " + numDays);
 }
}

 This is the output from the program.

 Number of Days = 29

Technically, the final break is not required because flow would fall out
of the switch statement anyway. However, we recommend using a
break so that modifying the code is easier and less error-prone. The
default section handles all values that aren't explicitly handled by one
of the case sections.

THE WHILE AND DO-WHILE STATEMENTS

The while statement continually executes a block of statements while a
particular condition is true. Its syntax can be expressed as:

while (expression) {
 statement(s)
}

The while statement evaluates expression, which must return a boolean
value. If the expression evaluates to true, the while statement executes
the statement(s) in the while block. The while statement continues
testing the expression and executing its block until the expression
evaluates to false. Using the while statement to print the values from 1
through 10 can be accomplished as in the following WhileDemo
program:

class SwitchDemo {
 public static void main(String[] args) {

 int month = 8;
 switch (month) {
 case 1: System.out.println("January"); break;
 case 2: System.out.println("February"); break;
 case 3: System.out.println("March"); break;
 case 4: System.out.println("April"); break;
 case 5: System.out.println("May"); break;
 case 6: System.out.println("June"); break;
 case 7: System.out.println("July"); break;
 case 8: System.out.println("August"); break;
 case 9: System.out.println("September"); break;
 case 10: System.out.println("October"); break;
 case 11: System.out.println("November"); break;
 case 12: System.out.println("December"); break;
 default: System.out.println("Invalid month.");break;
 }
 }
}

In this case, "August" is printed to standard output.

The body of a switch statement is known as a switch block. Any
statement immediately contained by the switch block may be labeled
with one or more case or default labels.

The switch statement evaluates its expression and executes the
appropriate case.

Of course, you could also implement the same thing with if-then-else
statements:

int month = 8;
if (month == 1) {
 System.out.println("January");
} else if (month == 2) {
 System.out.println("February");
}
. . . // and so on

Deciding whether to use if-then-else statements or a switch statement
is sometimes a judgment call. You can decide which one to use based
on readability and other factors.

An if-then-else statement can be used to make decisions based on
ranges of values or conditions, whereas a switch statement can make
decisions based only on a single integer or enumerated value.

Another point of interest is the break statement after each case. Each
break statement terminates the enclosing switch statement. Control
flow continues with the first statement following the switch block.

The break statements are necessary because without them, case
statements fall through; that is, without an explicit break, control will
flow sequentially through subsequent case statements. The following
program, SwitchDemo2, illustrates why it might be useful to have
case statements fall through:

SARVA EDUCATION (SITED) (Running- An I.T & Skill Advancement Training Programme) - 19 -

Visit us at: www.sarvaindia.com Licensed by Govt. of India ISO 9001:2008 Certified

The following program, ForDemo, uses the general form of the for
statement to print the numbers 1 through 10 to standard output:

class ForDemo {
 public static void main(String[] args){
 for(int i=1; i<11; i++){
 System.out.println("Count is: " + i);
 }
 }
}

The output of this program is:
Count is: 1
Count is: 2
Count is: 3
Count is: 4
Count is: 5
Count is: 6
Count is: 7
Count is: 8
Count is: 9
Count is: 10

Notice how the code declares a variable within the initialization
expression. The scope of this variable extends from its declaration
to the end of the block governed by the for statement, so it can be
used in the termination and increment expressions as well. If the
variable that controls a for statement is not needed outside of the
loop, it's best to declare the variable in the initialization expression.
The names i, j, and k are often used to control for loops; declaring
them within the initialization expression limits their life span and
reduces errors.

The three expressions of the for loop are optional; an infinite loop
can be created as follows:

for (; ;) { // infinite loop

 // your code goes here
}

The for statement also has another form designed for iteration
through Collections and arrays This form is sometimes referred to
as the enhanced for statement, and can be used to make your loops
more compact and easy to read. To demonstrate, consider the
following array, which holds the numbers 1 through 10:

int[] numbers = {1,2,3,4,5,6,7,8,9,10};

The following program, EnhancedForDemo, uses the enhanced for
to loop through the array:

class EnhancedForDemo {
 public static void main(String[] args){
 int[] numbers = {1,2,3,4,5,6,7,8,9,10};
 for (int item : numbers) {
 System.out.println("Count is: " + item);
 }
 }
}

class WhileDemo {
 public static void main(String[] args){
 int count = 1;
 while (count < 11) {
 System.out.println("Count is: " + count);
 count++;
 }
 }
}

You can implement an infinite loop using the while statement as
follows:

while (true){
 // your code goes here
}

The Java programming language also provides a do-while statement,
which can be expressed as follows:

do {
 statement(s)
} while (expression);

The difference between do-while and while is that do-while evaluates
its expression at the bottom of the loop instead of the top. Therefore, the
statements within the do block are always executed at least once, as
shown in the following DoWhileDemo program:

class DoWhileDemo {
 public static void main(String[] args){
 int count = 1;
 do {
 System.out.println("Count is: " + count);
 count++;
 } while (count <= 11);
 }
}

THE FOR STATEMENT

The for statement provides a compact way to iterate over a range of
values. Programmers often refer to it as the "for loop" because of the
way in which it repeatedly loops until a particular condition is satisfied.
The general form of the for statement can be expressed as follows:

for (initialization; termination; increment) {
 statement(s)
}

When using this version of the for statement, keep in mind that:

 The initialization expression initializes the loop; it's executed
once, as the loop begins.

 When the termination expression evaluates to false, the loop
terminates.

 The increment expression is invoked after each iteration
through the loop; it is perfectly acceptable for this expression to
increment or decrement a value.

SARVA EDUCATION (SITED) (Running- An I.T & Skill Advancement Training Programme) - 20 -

Visit us at: www.sarvaindia.com Licensed by Govt. of India ISO 9001:2008 Certified

An unlabeled break statement terminates the innermost switch, for,
while, or do-while statement, but a labeled break terminates an outer
statement.
The following program, BreakWithLabelDemo, is similar to the
previous program, but uses nested for loops to search for a value in
a two-dimensional array. When the value is found, a labeled break
terminates the outer for loop (labeled "search"):

class BreakWithLabelDemo {
 public static void main(String[] args) {

 int[][] arrayOfInts = { { 32, 87, 3, 589 },
 { 12, 1076, 2000, 8 },
 { 622, 127, 77, 955 }
 };
 int searchfor = 12;

 int i;
 int j = 0;
 boolean foundIt = false;

 search:
 for (i = 0; i < arrayOfInts.length; i++) {
 for (j = 0; j < arrayOfInts[i].length; j++) {
 if (arrayOfInts[i][j] == searchfor) {
 foundIt = true;
 break search;
 }
 }
 }

 if (foundIt) {
 System.out.println("Found " + searchfor +
 " at " + i + ", " + j);
 } else {
 System.out.println(searchfor
 + " not in the array");
 }
 }
}

This is the output of the program.

 Found 12 at 1, 0

The break statement terminates the labeled statement; it does not
transfer the flow of control to the label. Control flow is transferred
to the statement immediately following the labeled (terminated)
statement.

The continue Statement

The continue statement skips the current iteration of a for, while, or
do-while loop. The unlabeled form skips to the end of the innermost
loop's body and evaluates the boolean expression that controls the
loop. The following program, ContinueDemo , steps through a
String, counting the occurrences of the letter "p".

If the current character is not a p, the continue statement skips the
rest of the loop and proceeds to the next character. If it is a "p", the
program increments the letter counts.

In this example, the variable item holds the current value from the
numbers array.

The output from this program is the same as before:

Count is: 1
Count is: 2
Count is: 3
Count is: 4
Count is: 5
Count is: 6
Count is: 7
Count is: 8
Count is: 9
Count is: 10

We recommend using this form of the for statement instead of the
general form whenever possible.

BRANCHING STATEMENTS

The break Statement
The break statement has two forms: labeled and unlabeled.
You saw the unlabeled form in the previous discussion of the switch
statement. You can also use an unlabeled break to terminate a for,
while, or do-while loop, as shown in the following BreakDemo
program:

class BreakDemo {
 public static void main(String[] args) {

 int[] arrayOfInts = { 32, 87, 3, 589, 12, 1076,
 2000, 8, 622, 127 };
 int searchfor = 12;

 int i;
 boolean foundIt = false;

 for (i = 0; i < arrayOfInts.length; i++) {
 if (arrayOfInts[i] == searchfor) {
 foundIt = true;
 break;
 }
 }

 if (foundIt) {
 System.out.println("Found " + searchfor
 + " at index " + i);
 } else {
 System.out.println(searchfor
 + " not in the array");
 }
 }
}

This program searches for the number 12 in an array.
The break statement, shown in boldface, terminates the for loop when
that value is found. Control flow then transfers to the print statement at
the end of the program. This program's output is:

Found 12 at index 4

SARVA EDUCATION (SITED) (Running- An I.T & Skill Advancement Training Programme) - 21 -

Visit us at: www.sarvaindia.com Licensed by Govt. of India ISO 9001:2008 Certified

Here is the output from this program.

 Found it

The return Statement
The last of the branching statements is the return statement. The return
statement exits from the current method, and control flow returns to
where the method was invoked. The return statement has two forms:
one that returns a value, and one that doesn't. To return a value, simply
put the value (or an expression that calculates the value) after the
return keyword.

 return ++count;

The data type of the returned value must match the type of the
method's declared return value. When a method is declared void, use
the form of return that doesn't return a value.

 return;

CONCLUSION OF CONTROL FLOW STATEMENTS

The if-then statement is the most basic of all the control flow
statements. It tells your program to execute a certain section of code
only if a particular test evaluates to true. The if-then-else statement
provides a secondary path of execution when an "if" clause evaluates
to false. Unlike if-then and if-then-else, the switch statement allows for
any number of possible execution paths. The while and do-while
statements continually execute a block of statements while a particular
condition is true. The difference between do-while and while is that
do-while evaluates its expression at the bottom of the loop instead of
the top. Therefore, the statements within the do block are always
executed at least once. The for statement provides a compact way to
iterate over a range of values. It has two forms, one of which was
designed for looping through collections and arrays.

__

class ContinueDemo {
 public static void main(String[] args) {

 String searchMe = "peter piper picked a peck of pickled

peppers";
 int max = searchMe.length();
 int numPs = 0;

 for (int i = 0; i < max; i++) {
 //interested only in p's
 if (searchMe.charAt(i) != 'p')
 continue;

 //process p's
 numPs++;
 }
 System.out.println("Found" + numPs + " p's in the

string.");
 }
}

Here is the output of this program:
 Found 9 p's in the string.

To see this effect more clearly, try removing the continue statement
and recompiling. When you run the program again, the count will be
wrong, saying that it found 35 p's instead of 9.
A labeled continue statement skips the current iteration of an outer
loop marked with the given label. The following example program,
ContinueWithLabelDemo, uses nested loops to search for a substring
within another string. Two nested loops are required: one to iterate
over the substring and one to iterate over the string being searched.
The following program, ContinueWithLabelDemo, uses the labeled
form of continue to skip an iteration in the outer loop.

class ContinueWithLabelDemo {
 public static void main(String[] args) {
 String searchMe = "Look for a substring in me";
 String substring = "sub";
 boolean foundIt = false;

 int max = searchMe.length() - substring.length();

 test:
 for (int i = 0; i <= max; i++) {
 int n = substring.length();
 int j = i;
 int k = 0;
 while (n-- != 0) {
 if (searchMe.charAt(j++)
 != substring.charAt(k++)) {
 continue test;
 }
 }
 foundIt = true;
 break test;
 }
 System.out.println(foundIt ? "Found it" :
 "Didn't find it");
 }
}

SARVA EDUCATION (SITED) (Running- An I.T & Skill Advancement Training Programme) - 22 -

Visit us at: www.sarvaindia.com Licensed by Govt. of India ISO 9001:2008 Certified

CHAPTER - 7

CLASSES AND OBJECTS

A class declaration for a MountainBike class that is a subclass of
Bicycle might look like this:

public class MountainBike extends Bicycle {

 // the MountainBike subclass has one field
 public int seatHeight;

 // the MountainBike subclass has one constructor
 public MountainBike(int startHeight, int startCadence, int

startSpeed, int startGear) {
 super(startCadence, startSpeed, startGear);
 seatHeight = startHeight;
 }

 // the MountainBike subclass has one method
 public void setHeight(int newValue) {
 seatHeight = newValue;
 }

}

MountainBike inherits all the fields and methods of Bicycle and adds
the field seatHeight and a method to set it (mountain bikes have seats
that can be moved up and down as the terrain demands).

Declaring Classes

You've seen classes defined in the following way:

class MyClass {
 //field, constructor, and method declarations
}

This is a class declaration. The class body (the area between the
braces) contains all the code that provides for the life cycle of the
objects created from the class: constructors for initializing new objects,
declarations for the fields that provide the state of the class and its
objects, and methods to implement the behavior of the class and its
objects.

The preceding class declaration is a minimal one—it contains only
those components of a class declaration that are required. You can
provide more information about the class, such as the name of its
superclass, whether it implements any interfaces, and so on, at the start
of the class declaration. For example,

class MyClass extends MySuperClass implements YourInterface
{

 //field, constructor, and method declarations
}

Means that MyClass is a subclass of MySuperClass and that it
implements the YourInterface interface.

INTRODUCTION

With the knowledge you now have of the basics of the Java
programming language, you can learn to write your own classes. In
this chapter, you will find information about defining your own
classes, including declaring member variables, methods, and
constructors.
You will learn to use your classes to create objects, and how to use
the objects you create. This chapter also covers nesting classes within
other classes, enumerations, and annotations.

CLASSES

The introduction to object-oriented concepts in the lesson titled
Object-oriented Programming Concepts used a bicycle class as an
example, with racing bikes, mountain bikes, and tandem bikes as
subclasses.
Here is sample code for a possible implementation of a Bicycle class,
to give you an overview of a class declaration.
Subsequent sections of this lesson will back up and explain class
declarations step by step. For the moment, don't concern yourself
with the details.

public class Bicycle {

 // the Bicycle class has three fields
 public int cadence;
 public int gear;
 public int speed;

 // the Bicycle class has one constructor
 public Bicycle(int startCadence, int startSpeed, int startGear) {
 gear = startGear;
 cadence = startCadence;
 speed = startSpeed;
 }

 // the Bicycle class has four methods
 public void setCadence(int newValue) {
 cadence = newValue;
 }

 public void setGear(int newValue) {
 gear = newValue;
 }

 public void applyBrake(int decrement) {
 speed -= decrement;
 }

 public void speedUp(int increment) {
 speed += increment;
 }

}

SARVA EDUCATION (SITED) (Running- An I.T & Skill Advancement Training Programme) - 23 -

Visit us at: www.sarvaindia.com Licensed by Govt. of India ISO 9001:2008 Certified

In the spirit of encapsulation, it is common to make fields private. This
means that they can only be directly accessed from the Bicycle class.
We still need access to these values, however. This can be done
indirectly by adding public methods that obtain the field values for us:

public class Bicycle {

 private int cadence;
 private int gear;
 private int speed;

 public Bicycle(int startCadence, int startSpeed, int startGear) {
 gear = startGear;
 cadence = startCadence;
 speed = startSpeed;
 }

 public int getCadence() {
 return cadence;
 }

 public void setCadence(int newValue) {
 cadence = newValue;
 }

 public int getGear() {
 return gear;
 }

 public void setGear(int newValue) {
 gear = newValue;
 }

 public int getSpeed() {
 return speed;
 }

 public void applyBrake(int decrement) {
 speed -= decrement;
 }

 public void speedUp(int increment) {
 speed += increment;
 }

}

Types
All variables must have a type. You can use primitive types such as
int, float, boolean, etc. Or you can use reference types, such as strings,
arrays, or objects.

Defining Methods

Here is an example of a typical method declaration:

public double calculateAnswer(double wingSpan, int
numberOfEngines, double length, double grossTons) {

 //do the calculation here
}

The only required elements of a method declaration are the method's
return type, name, a pair of parentheses, (), and a body between braces,
{}.

You can also add modifiers like public or private at the very
beginning—so you can see that the opening line of a class
declaration can become quite complicated.

The modifiers public and private, which determine what other classes
can access MyClass, are discussed later in this lesson.

In general, class declarations can include these components, in order:

1. Modifiers such as public, private, and a number of others that
you will encounter later.

2. The class name, with the initial letter capitalized by convention.
3. The name of the class's parent (superclass), if any, preceded by

the keyword extends. A class can only extend (subclass) one
parent.

4. A comma-separated list of interfaces implemented by the class,
if any, preceded by the keyword implements. A class can
implement more than one interface.

5. The class body, surrounded by braces, {}.

Declaring Member Variables

There are several kinds of variables:

 Member variables in a class—these are called fields.
 Variables in a method or block of code—these are called local

variables.
 Variables in method declarations—these are called parameters.

The Bicycle class uses the following lines of code to define its fields:

public int cadence;
public int gear;
public int speed;

Field declarations are composed of three components, in order:

1. Zero or more modifiers, such as public or private.
2. The field's type.
3. The field's name.

The fields of Bicycle are named cadence, gear, and speed and are all
of data type integer (int).

The public keyword identifies these fields as public members,
accessible by any object that can access the class.

Access Modifiers

The first (left-most) modifier used lets you control what other classes
have access to a member field.

For the moment, consider only public and private. Other access
modifiers will be discussed later.

 public modifier—the field is accessible from all classes.
 private modifier—the field is accessible only within its own

class.

SARVA EDUCATION (SITED) (Running- An I.T & Skill Advancement Training Programme) - 24 -

Visit us at: www.sarvaindia.com Licensed by Govt. of India ISO 9001:2008 Certified

public class DataArtist {
 ...
 public void draw(String s) {
 ...
 }
 public void draw(int i) {
 ...
 }
 public void draw(double f) {
 ...
 }
 public void draw(int i, double f) {
 ...
 }
}

Overloaded methods are differentiated by the number and the type of
the arguments passed into the method. In the code sample, draw(String
s) and draw(int i) are distinct and unique methods because they require
different argument types.
You cannot declare more than one method with the same name and the
same number and type of arguments, because the compiler cannot tell
them apart. The compiler does not consider return type when
differentiating methods, so you cannot declare two methods with the
same signature even if they have a different return type.

Providing Constructors for Your Classes

A class contains constructors that are invoked to create objects from
the class blueprint. Constructor declarations look like method
declarations—except that they use the name of the class and have no
return type. For example, Bicycle has one constructor:

public Bicycle(int startCadence, int startSpeed, int startGear) {
 gear = startGear;
 cadence = startCadence;
 speed = startSpeed;
}

To create a new Bicycle object called myBike, a constructor is called
by the new operator:

Bicycle myBike = new Bicycle(30, 0, 8);
new Bicycle(30, 0, 8) creates space in memory for the object

and initializes its fields.

Although Bicycle only has one constructor, it could have others,
including a no-argument constructor:

public Bicycle() {
 gear = 1;
 cadence = 10;
 speed = 0;
}

Bicycle yourBike = new Bicycle(); invokes the no-argument
constructor to create a new Bicycle object called yourBike.

Both constructors could have been declared in Bicycle because they
have different argument lists. As with methods, the Java platform
differentiates constructors on the basis of the number of arguments in
the list and their types.

More generally, method declarations have six components, in order:

1. Modifiers—such as public, private, and others you will learn
about later.

2. The return type—the data type of the value returned by the
method, or void if the method does not return a value.

3. The method name—the rules for field names apply to method
names as well, but the convention is a little different.

4. The parameter list in parenthesis—a comma-delimited list of
input parameters, preceded by their data types, enclosed by
parentheses, (). If there are no parameters, you must use
empty parentheses.

5. An exception list—to be discussed later.
6. The method body, enclosed between braces—the method's

code, including the declaration of local variables, goes here.

Modifiers, return types, and parameters will be discussed later in this
lesson. Exceptions are discussed in a later lesson.
Definition: Two of the components of a method declaration
comprise the method signature—the method's name and the
parameter types.

The signature of the method declared above is:

 calculateAnswer(double, int, double, double)

Naming a Method
Although a method name can be any legal identifier, code
conventions restrict method names. By convention, method names
should be a verb in lowercase or a multi-word name that begins with
a verb in lowercase, followed by adjectives, nouns, etc. In multi-
word names, the first letter of each of the second and following
words should be capitalized. Here are some examples:

run
runFast
getBackground
getFinalData
compareTo
setX
isEmpty

Typically, a method has a unique name within its class. However, a
method might have the same name as other methods due to method
overloading.

Overloading Methods
The Java programming language supports overloading methods, and
Java can distinguish between methods with different method
signatures. This means that methods within a class can have the same
name if they have different parameter lists. Suppose that you have a
class that can use calligraphy to draw various types of data (strings,
integers, and so on) and that contains a method for drawing each data
type. It is cumbersome to use a new name for each method—for
example, drawString, drawInteger, drawFloat, and so on. In the Java
programming language, you can use the same name for all the
drawing methods but pass a different argument list to each method.
Thus, the data drawing class might declare four methods named
draw, each of which has a different parameter list.

SARVA EDUCATION (SITED) (Running- An I.T & Skill Advancement Training Programme) - 25 -

Visit us at: www.sarvaindia.com Licensed by Govt. of India ISO 9001:2008 Certified

 public Polygon polygonFrom(Point[] corners) {

 // method body goes here
}

Note : The Java programming language doesn't let you pass
methods into methods. But you can pass an object into a method
and then invoke the object's methods.

Arbitrary Number of Arguments
You can use a construct called varargs to pass an arbitrary number
of values to a method. You use varargs when you don't know how
many of a particular type of argument will be passed to the method.
It's a shortcut to creating an array manually (the previous method
could have used varargs rather than an array).
To use varargs, you follow the type of the last parameter by an
ellipsis (three dots, ...), then a space, and the parameter name. The
method can then be called with any number of that parameter,
including none.

public Polygon polygonFrom(Point... corners) {
 int numberOfSides = corners.length;
 double squareOfSide1, lengthOfSide1;
 squareOfSide1 = (corners[1].x - corners[0].x)*(corners[1].x

- corners[0].x)
 + (corners[1].y -

corners[0].y)*(corners[1].y - corners[0].y) ;
 lengthOfSide1 = Math.sqrt(squareOfSide1);
 // more method body code follows that creates
 // and returns a polygon connecting the Points
}

You can see that, inside the method, corners is treated like an array.
The method can be called either with an array or with a sequence of
arguments. The code in the method body will treat the parameter as
an array in either case.
You will most commonly see varargs with the printing methods; for
example, this printf method:

public PrintStream printf(String format, Object... args)
allows you to print an arbitrary number of objects. It can be

called like this:
System.out.printf("%s: %d, %s%n", name, idnum, address);

or like this
System.out.printf("%s: %d, %s, %s, %s%n", name, idnum,

address, phone, email);
or with yet a different number of arguments.

Parameter Names
When you declare a parameter to a method or a constructor, you
provide a name for that parameter. This name is used within the
method body to refer to the passed-in argument.
The name of a parameter must be unique in its scope. It cannot be
the same as the name of another parameter for the same method or
constructor, and it cannot be the name of a local variable within the
method or constructor.
A parameter can have the same name as one of the class's fields. If
this is the case, the parameter is said to shadow the field. Shadowing
fields can make your code difficult to read and is conventionally
used only within constructors and methods that set a particular field.
For example, consider the following Circle class and its setOrigin
method:

You cannot write two constructors that have the same number and type
of arguments for the same class, because the platform would not be able
to tell them apart. Doing so causes a compile-time error.
You don't have to provide any constructors for your class, but you must
be careful when doing this. The compiler automatically provides a no-
argument, default constructor for any class without constructors. This
default constructor will call the no-argument constructor of the
superclass. In this situation, the compiler will complain if the superclass
doesn't have a no-argument constructor so you must verify that it does.
If your class has no explicit superclass, then it has an implicit superclass
of Object, which does have a no-argument constructor.
You can use a superclass constructor yourself. The MountainBike class
at the beginning of this lesson did just that. This will be discussed later,
in the lesson on interfaces and inheritance. You can use access
modifiers in a constructor's declaration to control which other classes
can call the constructor.

Passing Information to a Method or a Constructor

The declaration for a method or a constructor declares the number and
the type of the arguments for that method or constructor. For example,
the following is a method that computes the monthly payments for a
home loan, based on the amount of the loan, the interest rate, the length
of the loan (the number of periods), and the future value of the loan:

public double computePayment(double loanAmt,
 double rate,
 double futureValue,
 int numPeriods) {
 double interest = rate / 100.0;
 double partial1 = Math.pow((1 + interest), -numPeriods);
 double denominator = (1 - partial1) / interest;
 double answer = (-loanAmt / denominator)
 - ((futureValue * partial1) / denominator);
 return answer;
}

This method has four parameters: the loan amount, the interest rate, the
future value and the number of periods. The first three are double-
precision floating point numbers, and the fourth is an integer. The
parameters are used in the method body and at runtime will take on the
values of the arguments that are passed in.

Note : Parameters refers to the list of variables in a method
declaration. Arguments are the actual values that are passed in when
the method is invoked. When you invoke a method, the arguments used
must match the declaration's parameters in type and order.

Parameter Types
You can use any data type for a parameter of a method or a constructor.
This includes primitive data types, such as doubles, floats, and integers,
as you saw in the computePayment method, and reference data types,
such as objects and arrays.
Here's an example of a method that accepts an array as an argument. In
this example, the method creates a new Polygon object and initializes it
from an array of Point objects (assume that Point is a class that
represents an x, y coordinate):

SARVA EDUCATION (SITED) (Running- An I.T & Skill Advancement Training Programme) - 26 -

Visit us at: www.sarvaindia.com Licensed by Govt. of India ISO 9001:2008 Certified

Let the method be invoked with these arguments:

moveCircle(myCircle, 23, 56)

Inside the method, circle initially refers to myCircle. The method
changes the x and y coordinates of the object that circle references
(i.e., myCircle) by 23 and 56, respectively. These changes will persist
when the method returns. Then circle is assigned a reference to a new
Circle object with x = y = 0. This reassignment has no permanence,
however, because the reference was passed in by value and cannot
change.

Within the method, the object pointed to by circle has changed, but,
when the method returns, myCircle still references the same Circle
object as before the method was called.

OBJECTS

A typical Java program creates many objects, which as you know,
interact by invoking methods. Through these object interactions, a
program can carry out various tasks, such as implementing a GUI,
running an animation, or sending and receiving information over a
network. Once an object has completed the work for which it was
created, its resources are recycled for use by other objects.

Here's a small program, called CreateObjectDemo, that creates three
objects: one Point object and two Rectangle objects. You will need all
three source files to compile this program.

public class CreateObjectDemo {

 public static void main(String[] args) {

 //Declare and create a point object
 //and two rectangle objects.
 Point originOne = new Point(23, 94);
 Rectangle rectOne = new Rectangle(originOne, 100, 200);
 Rectangle rectTwo = new Rectangle(50, 100);

 //display rectOne's width, height, and area
 System.out.println("Width of rectOne: " +
 rectOne.width);
 System.out.println("Height of rectOne: " +
 rectOne.height);
 System.out.println("Area of rectOne: " + rectOne.getArea());

 //set rectTwo's position
 rectTwo.origin = originOne;

 //display rectTwo's position
 System.out.println("X Position of rectTwo: "
 + rectTwo.origin.x);
 System.out.println("Y Position of rectTwo: "
 + rectTwo.origin.y);

 //move rectTwo and display its new position
 rectTwo.move(40, 72);
 System.out.println("X Position of rectTwo: "
 + rectTwo.origin.x);
 System.out.println("Y Position of rectTwo: "
 + rectTwo.origin.y);
 }
}

public class Circle {
 private int x, y, radius;
 public void setOrigin(int x, int y) {
 ...
 }
}

The Circle class has three fields: x, y, and radius. The setOrigin
method has two parameters, each of which has the same name as one
of the fields. Each method parameter shadows the field that shares its
name. So using the simple names x or y within the body of the
method refers to the parameter, not to the field. To access the field,
you must use a qualified name. This will be discussed later in this
lesson in the section titled "Using the this Keyword."

Passing Primitive Data Type Arguments
Primitive arguments, such as an int or a double, are passed into
methods by value. This means that any changes to the values of the
parameters exist only within the scope of the method. When the
method returns, the parameters are gone and any changes to them are
lost. Here is an example:

public class PassPrimitiveByValue {

 public static void main(String[] args) {

 int x = 3;

 //invoke passMethod() with x as argument
 passMethod(x);

 // print x to see if its value has changed
 System.out.println("After invoking passMethod, x = " + x);

 }

 // change parameter in passMethod()
 public static void passMethod(int p) {
 p = 10;
 }
}

When you run this program, the output is:
After invoking passMethod, x = 3

Passing Reference Data Type Arguments
Reference data type parameters, such as objects, are also passed into
methods by value. This means that when the method returns, the
passed-in reference still references the same object as before.
However, the values of the object's fields can be changed in the
method, if they have the proper access level. For example, consider a
method in an arbitrary class that moves Circle objects:

public void moveCircle(Circle circle, int deltaX, int deltaY) {
 // code to move origin of circle to x+deltaX, y+deltaY
 circle.setX(circle.getX() + deltaX);
 circle.setY(circle.getY() + deltaY);

 //code to assign a new reference to circle
 circle = new Circle(0, 0);
}

SARVA EDUCATION (SITED) (Running- An I.T & Skill Advancement Training Programme) - 27 -

Visit us at: www.sarvaindia.com Licensed by Govt. of India ISO 9001:2008 Certified

Instantiating a Class
The new operator instantiates a class by allocating memory for a new
object and returning a reference to that memory. The new operator also
invokes the object constructor.

Note: The phrase "instantiating a class" means the same thing as
"creating an object." When you create an object, you are creating an
"instance" of a class, therefore "instantiating" a class.

The new operator requires a single, postfix argument: a call to a
constructor. The name of the constructor provides the name of the
class to instantiate.
The new operator returns a reference to the object it created. This
reference is usually assigned to a variable of the appropriate type, like:
Point originOne = new Point(23, 94);

The reference returned by the new operator does not have to be
assigned to a variable. It can also be used directly in an expression. For
example: int height = new Rectangle().height;

Initializing an Object
Here's the code for the Point class:

public class Point {
 public int x = 0;
 public int y = 0;
 //constructor
 public Point(int a, int b) {
 x = a;
 y = b;
 }
}

This class contains a single constructor. You can recognize a
constructor because its declaration uses the same name as the class and
it has no return type. The constructor in the Point class takes two
integer arguments, as declared by the code (int a, int b). The following
statement provides 23 and 94 as values for those arguments:

Point originOne = new Point(23, 94);

The result of executing this statement can be illustrated in the next
figure:

This program creates, manipulates, and displays information about
various objects. Here's the output:

Width of rectOne: 100
Height of rectOne: 200
Area of rectOne: 20000
X Position of rectTwo: 23
Y Position of rectTwo: 94
X Position of rectTwo: 40
Y Position of rectTwo: 72

The following three sections use the above example to describe the
life cycle of an object within a program. From them, you will learn
how to write code that creates and uses objects in your own
programs. You will also learn how the system cleans up after an
object when its life has ended.

Creating Objects

As you know, a class provides the blueprint for objects; you create an
object from a class. Each of the following statements taken from the
CreateObjectDemo program creates an object and assigns it to a
variable:

Point originOne = new Point(23, 94);
Rectangle rectOne = new Rectangle(originOne, 100, 200);
Rectangle rectTwo = new Rectangle(50, 100);

The first line creates an object of the Point class, and the second and
third lines each create an object of the Rectangle class.

Each of these statements has three parts (discussed in detail below):

1. Declaration: The code set in bold are all variable declarations
that associate a variable name with an object type.

2. Instantiation: The new keyword is a Java operator that creates
the object.

3. Initialization: The new operator is followed by a call to a
constructor, which initializes the new object.

Declaring a Variable to Refer to an Object
Previously, you learned that to declare a variable, you write: type
name;

This notifies the compiler that you will use name to refer to data
whose type is type. With a primitive variable, this declaration also
reserves the proper amount of memory for the variable.
You can also declare a reference variable on its own line. For
example: Point originOne;
If you declare originOne like this, its value will be undetermined
until an object is actually created and assigned to it. Simply declaring
a reference variable does not create an object. For that, you need to
use the new operator, as described in the next section. You must
assign an object to originOne before you use it in your code.
Otherwise, you will get a compiler error.
A variable in this state, which currently references no object, can be
illustrated as follows (the variable name, originOne, plus a reference
pointing to nothing):

SARVA EDUCATION (SITED) (Running- An I.T & Skill Advancement Training Programme) - 28 -

Visit us at: www.sarvaindia.com Licensed by Govt. of India ISO 9001:2008 Certified

The following line of code calls the Rectangle constructor that requires
two integer arguments, which provide the initial values for width and
height. If you inspect the code within the constructor, you will see that
it creates a new Point object whose x and y values are initialized to 0:

 Rectangle rectTwo = new Rectangle(50, 100);

The Rectangle constructor used in the following statement doesn't take
any arguments, so it's called a no-argument constructor:

 Rectangle rect = new Rectangle();

All classes have at least one constructor. If a class does not explicitly
declare any, the Java compiler automatically provides a no-argument
constructor, called the default constructor. This default constructor
calls the class parent's no-argument constructor, or the Object
constructor if the class has no other parent. If the parent has no
constructor (Object does have one), the compiler will reject the
program.

Using Objects

Once you've created an object, you probably want to use it for
something. You may need to use the value of one of its fields, change
one of its fields, or call one of its methods to perform an action.

Referencing an Object's Fields

Object fields are accessed by their name. You must use a name that is
unambiguous.

You may use a simple name for a field within its own class. For
example, we can add a statement within the Rectangle class that prints
the width and height:

System.out.println("Width and height are: " + width + ", " + height);

In this case, width and height are simple names.
Code that is outside the object's class must use an object reference or
expression, followed by the dot (.) operator, followed by a simple field
name, as in: objectReference.fieldName

Here's the code for the Rectangle class, which contains four
constructors:

public class Rectangle {
 public int width = 0;
 public int height = 0;
 public Point origin;

 // four constructors
 public Rectangle() {
 origin = new Point(0, 0);
 }
 public Rectangle(Point p) {
 origin = p;
 }
 public Rectangle(int w, int h) {
 origin = new Point(0, 0);
 width = w;
 height = h;
 }
 public Rectangle(Point p, int w, int h) {
 origin = p;
 width = w;
 height = h;
 }

 // a method for moving the rectangle
 public void move(int x, int y) {
 origin.x = x;
 origin.y = y;
 }

 // a method for computing the area of the rectangle
 public int getArea() {
 return width * height;
 }
}

Each constructor lets you provide initial values for the rectangle's
size and width, using both primitive and reference types.

If a class has multiple constructors, they must have different
signatures.

The Java compiler differentiates the constructors based on the
number and the type of the arguments.

When the Java compiler encounters the following code, it knows to
call the constructor in the Rectangle class that requires a Point
argument followed by two integer arguments:

 Rectangle rectOne = new Rectangle(originOne, 100, 200);

This calls one of Rectangle's constructors that initialize origin to
originOne.

 Also, the constructor sets width to 100 and height to 200.

Now there are two references to the same Point object— an object
can have multiple references to it, as shown in the next figure:

SARVA EDUCATION (SITED) (Running- An I.T & Skill Advancement Training Programme) - 29 -

Visit us at: www.sarvaindia.com Licensed by Govt. of India ISO 9001:2008 Certified

System.out.println("Area of rectOne: " + rectOne.getArea());
...
rectTwo.move(40, 72);

The first statement invokes rectOne's getArea() method and displays
the results. The second line moves rectTwo because the move()
method assigns new values to the object's origin.x and origin.y.

As with instance fields, objectReference must be a reference to an
object. You can use a variable name, but you also can use any
expression that returns an object reference. The new operator
returns an object reference, so you can use the value returned from
new to invoke a new object's methods:

new Rectangle(100, 50).getArea()

The expression new Rectangle(100, 50) returns an object reference
that refers to a Rectangle object. As shown, you can use the dot
notation to invoke the new Rectangle's getArea() method to
compute the area of the new rectangle.

Some methods, such as getArea(), return a value. For methods that
return a value, you can use the method invocation in expressions.
You can assign the return value to a variable, use it to make
decisions, or control a loop. This code assigns the value returned by
getArea() to the variable areaOfRectangle:

int areaOfRectangle = new Rectangle(100, 50).getArea();

Remember, invoking a method on a particular object is the same as
sending a message to that object. In this case, the object that
getArea() is invoked on is the rectangle returned by the constructor.

The Garbage Collector

Some object-oriented languages require that you keep track of all
the objects you create and that you explicitly destroy them when
they are no longer needed. Managing memory explicitly is tedious
and error-prone. The Java platform allows you to create as many
objects as you want (limited, of course, by what your system can
handle), and you don't have to worry about destroying them. The
Java runtime environment deletes objects when it determines that
they are no longer being used. This process is called garbage
collection. An object is eligible for garbage collection when there
are no more references to that object. References that are held in a
variable are usually dropped when the variable goes out of scope.
Or, you can explicitly drop an object reference by setting the
variable to the special value null. Remember that a program can
have multiple references to the same object; all references to an
object must be dropped before the object is eligible for garbage
collection. The Java runtime environment has a garbage collector
that periodically frees the memory used by objects that are no
longer referenced. The garbage collector does its job automatically
when it determines that the time is right.

For example, the code in the CreateObjectDemo class is outside the
code for the Rectangle class. So to refer to the origin, width, and height
fields within the Rectangle object named rectOne, the
CreateObjectDemo class must use the names rectOne.origin,
rectOne.width, and rectOne.height, respectively. The program uses two
of these names to display the width and the height of rectOne:

System.out.println("Width of rectOne: " + rectOne.width);
System.out.println("Height of rectOne: " + rectOne.height);

Attempting to use the simple names width and height from the code in
the CreateObjectDemo class doesn't make sense — those fields exist
only within an object — and results in a compiler error.

Later, the program uses similar code to display information about
rectTwo. Objects of the same type have their own copy of the same
instance fields. Thus, each Rectangle object has fields named origin,
width, and height. When you access an instance field through an object
reference, you reference that particular object's field. The two objects
rectOne and rectTwo in the CreateObjectDemo program have different
origin, width, and height fields.

To access a field, you can use a named reference to an object, as in the
previous examples, or you can use any expression that returns an object
reference. Recall that the new operator returns a reference to an object.
So you could use the value returned from new to access a new object's
fields:

 int height = new Rectangle().height;

This statement creates a new Rectangle object and immediately gets its
height. In essence, the statement calculates the default height of a
Rectangle. Note that after this statement has been executed, the
program no longer has a reference to the created Rectangle, because the
program never stored the reference anywhere. The object is
unreferenced, and its resources are free to be recycled by the Java
Virtual Machine.

Calling an Object's Methods

You also use an object reference to invoke an object's method. You
append the method's simple name to the object reference, with an
intervening dot operator (.). Also, you provide, within enclosing
parentheses, any arguments to the method. If the method does not
require any arguments, use empty parentheses.

objectReference.methodName(argumentList);
 or
objectReference.methodName();

The Rectangle class has two methods: getArea() to compute the
rectangle's area and move() to change the rectangle's origin. Here's the
CreateObjectDemo code that invokes these two methods:

SARVA EDUCATION (SITED) (Running- An I.T & Skill Advancement Training Programme) - 30 -

Visit us at: www.sarvaindia.com Licensed by Govt. of India ISO 9001:2008 Certified

CHAPTER - 8

INTERFACES AND INHERITANCE

To use an interface, you write a class that implements the interface.
When an instantiable class implements an interface, it provides a
method body for each of the methods declared in the interface. For
example,

public class OperateBMW760i implements OperateCar {

 // the OperateCar method signatures, with implementation --
 // for example:
 int signalTurn(Direction direction, boolean signalOn) {
 //code to turn BMW's LEFT turn indicator lights on
 //code to turn BMW's LEFT turn indicator lights off
 //code to turn BMW's RIGHT turn indicator lights on
 //code to turn BMW's RIGHT turn indicator lights off
 }

 // other members, as needed -- for example, helper classes
 // not visible to clients of the interface

}

In the robotic car example above, it is the automobile manufacturers
who will implement the interface. Chevrolet's implementation will be
substantially different from that of Toyota, of course, but both
manufacturers will adhere to the same interface. The guidance
manufacturers, who are the clients of the interface, will build systems
that use GPS data on a car's location, digital street maps, and traffic
data to drive the car. In so doing, the guidance systems will invoke the
interface methods: turn, change lanes, brake, accelerate, and so forth.

Interfaces as APIs

The robotic car example shows an interface being used as an industry
standard Application Programming Interface (API). APIs are also
common in commercial software products. Typically, a company sells
a software package that contains complex methods that another
company wants to use in its own software product. An example would
be a package of digital image processing methods that are sold to
companies making end-user graphics programs. The image processing
company writes its classes to implement an interface, which it makes
public to its customers. The graphics company then invokes the image
processing methods using the signatures and return types defined in
the interface. While the image processing company's API is made
public (to its customers), its implementation of the API is kept as a
closely guarded secret—in fact, it may revise the implementation at a
later date as long as it continues to implement the original interface
that its customers have relied on.

Interfaces and Multiple Inheritance

Interfaces have another very important role in the Java programming
language. Interfaces are not part of the class hierarchy, although they
work in combination with classes. The Java programming language
does not permit multiple inheritance, but interfaces provide an
alternative.

INTERFACES

There are a number of situations in software engineering when it is
important for disparate groups of programmers to agree to a
"contract" that spells out how their software interacts. Each group
should be able to write their code without any knowledge of how the
other group's code is written. Generally speaking, interfaces are such
contracts.
For example, imagine a futuristic society where computer-controlled
robotic cars transport passengers through city streets without a
human operator. Automobile manufacturers write software (Java, of
course) that operates the automobile—stop, start, accelerate, turn left,
and so forth. Another industrial group, electronic guidance
instrument manufacturers, make computer systems that receive GPS
(Global Positioning Satellite) position data and wireless transmission
of traffic conditions and use that information to drive the car.
The auto manufacturers must publish an industry-standard interface
that spells out in detail what methods can be invoked to make the car
move (any car, from any manufacturer). The guidance manufacturers
can then write software that invokes the methods described in the
interface to command the car. Neither industrial group needs to know
how the other group's software is implemented. In fact, each group
considers its software highly proprietary and reserves the right to
modify it at any time, as long as it continues to adhere to the
published interface.

Interfaces in Java
In the Java programming language, an interface is a reference type,
similar to a class, that can contain only constants, method signatures,
and nested types. There are no method bodies. Interfaces cannot be
instantiated—they can only be implemented by classes or extended
by other interfaces. Extension is discussed later in this Chapter.

Defining an interface is similar to creating a new class:

public interface OperateCar {

 // constant declarations, if any

 // method signatures
 int turn(Direction direction, // An enum with values RIGHT,

LEFT
 double radius, double startSpeed, double endSpeed);
 int changeLanes(Direction direction, double startSpeed,

double endSpeed);
 int signalTurn(Direction direction, boolean signalOn);
 int getRadarFront(double distanceToCar, double

speedOfCar);
 int getRadarRear(double distanceToCar, double speedOfCar);

 // more method signatures
}

Note that the method signatures have no braces and are terminated
with a semicolon.

SARVA EDUCATION (SITED) (Running- An I.T & Skill Advancement Training Programme) - 31 -

Visit us at: www.sarvaindia.com Licensed by Govt. of India ISO 9001:2008 Certified

In Java, a class can inherit from only one class but it can implement more than one interface. Therefore, objects can have multiple types: the type of
their own class and the types of all the interfaces that they implement. This means that if a variable is declared to be the type of an interface, its
value can reference any object that is instantiated from any class that implements the interface. This is discussed later in this lesson, in the section
titled "Using an Interface as a Type."

Defining an Interface

An interface declaration consists of modifiers, the keyword interface, the interface name, a comma-separated list of parent interfaces (if any), and
the interface body. For example:

public interface GroupedInterface extends Interface1,
 Interface2, Interface3 {

 // constant declarations
 double E = 2.718282; // base of natural logarithms

 // method signatures
 void doSomething (int i, double x);
 int doSomethingElse(String s);

}

The public access specifier indicates that the interface can be used by any class in any package. If you do not specify that the interface is public,
your interface will be accessible only to classes defined in the same package as the interface.
An interface can extend other interfaces, just as a class can extend or subclass another class. However, whereas a class can extend only one other
class, an interface can extend any number of interfaces. The interface declaration includes a comma-separated list of all the interfaces that it
extends.

The Interface Body

The interface body contains method declarations for all the methods included in the interface. A method declaration within an interface is followed
by a semicolon, but no braces, because an interface does not provide implementations for the methods declared within it. All methods declared in
an interface are implicitly public, so the public modifier can be omitted.
An interface can contain constant declarations in addition to method declarations. All constant values defined in an interface are implicitly public,
static, and final. Once again, these modifiers can be omitted.

Implementing an Interface

To declare a class that implements an interface, you include an implements clause in the class declaration. Your class can implement more than one
interface, so the implements keyword is followed by a comma-separated list of the interfaces implemented by the class.
By convention, the implements clause follows the extends clause, if there is one.

A Sample Interface, Relatable

Consider an interface that defines how to compare the size of objects.

public interface Relatable {

 // this (object calling isLargerThan) and
 // other must be instances of the same class
 // returns 1, 0, -1 if this is greater
 // than, equal to, or less than other
 public int isLargerThan(Relatable other);

}

If you want to be able to compare the size of similar objects, no matter what they are, the class that instantiates them should implement Relatable.

Any class can implement Relatable if there is some way to compare the relative "size" of objects instantiated from the class. For strings, it could be
number of characters; for books, it could be number of pages; for students, it could be weight; and so forth. For planar geometric objects, area
would be a good choice (see the RectanglePlus class that follows), while volume would work for three-dimensional geometric objects. All such
classes can implement the isLargerThan() method.

SARVA EDUCATION (SITED) (Running- An I.T & Skill Advancement Training Programme) - 32 -

Visit us at: www.sarvaindia.com Licensed by Govt. of India ISO 9001:2008 Certified

As an example, here is a method for finding the largest object in a pair
of objects, for any objects that are instantiated from a class that
implements Relatable:

public Object findLargest(Object object1, Object object2) {
 Relatable obj1 = (Relatable)object1;
 Relatable obj2 = (Relatable)object2;
 if ((obj1).isLargerThan(obj2) > 0)
 return object1;
 else
 return object2;
}

By casting object1 to a Relatable type, it can invoke the isLargerThan
method.
If you make a point of implementing Relatable in a wide variety of
classes, the objects instantiated from any of those classes can be
compared with the findLargest() method—provided that both objects
are of the same class. Similarly, they can all be compared with the
following methods:

public Object findSmallest(Object object1, Object object2) {
 Relatable obj1 = (Relatable)object1;
 Relatable obj2 = (Relatable)object2;
 if ((obj1).isLargerThan(obj2) < 0)
 return object1;
 else
 return object2;
}

public boolean isEqual(Object object1, Object object2) {
 Relatable obj1 = (Relatable)object1;
 Relatable obj2 = (Relatable)object2;
 if ((obj1).isLargerThan(obj2) == 0)
 return true;
 else
 return false;
}

These methods work for any "relatable" objects, no matter what their
class inheritance is. When they implement Relatable, they can be of
both their own class (or superclass) type and a Relatable type. This
gives them some of the advantages of multiple inheritance, where they
can have behavior from both a superclass and an interface.

Rewriting Interfaces

Consider an interface that you have developed called DoIt:

public interface DoIt {
 void doSomething(int i, double x);
 int doSomethingElse(String s);
}

Suppose that, at a later time, you want to add a third method to DoIt,
so that the interface now becomes:

public interface DoIt {

 void doSomething(int i, double x);
 int doSomethingElse(String s);
 boolean didItWork(int i, double x, String s);

}

If you know that a class implements Relatable, then you know that
you can compare the size of the objects instantiated from that class.

Implementing the Relatable Interface
Here is the Rectangle class that was presented in the Creating
Objects section, rewritten to implement Relatable.

public class RectanglePlus implements Relatable {
 public int width = 0;
 public int height = 0;
 public Point origin;

 // four constructors
 public RectanglePlus() {
 origin = new Point(0, 0);
 }
 public RectanglePlus(Point p) {
 origin = p;
 }
 public RectanglePlus(int w, int h) {
 origin = new Point(0, 0);
 width = w;
 height = h;
 }
 public RectanglePlus(Point p, int w, int h) {
 origin = p;
 width = w;
 height = h;
 }

 // a method for moving the rectangle
 public void move(int x, int y) {
 origin.x = x;
 origin.y = y;
 }

 // a method for computing the area of the rectangle
 public int getArea() {
 return width * height;
 }

 // a method to implement Relatable
 public int isLargerThan(Relatable other) {
 RectanglePlus otherRect = (RectanglePlus)other;
 if (this.getArea() < otherRect.getArea())
 return -1;
 else if (this.getArea() > otherRect.getArea())
 return 1;
 else
 return 0;
 }
}

Because RectanglePlus implements Relatable, the size of any two
RectanglePlus objects can be compared.

Using an Interface as a Type
When you define a new interface, you are defining a new reference
data type. You can use interface names anywhere you can use any
other data type name. If you define a reference variable whose type is
an interface, any object you assign to it must be an instance of a class
that implements the interface.

SARVA EDUCATION (SITED) (Running- An I.T & Skill Advancement Training Programme) - 33 -

Visit us at: www.sarvaindia.com Licensed by Govt. of India ISO 9001:2008 Certified

At the top of the hierarchy, Object is the most general of all classes.
Classes near the bottom of the hierarchy provide more specialized
behavior.

An Example of Inheritance

Here is the sample code for a possible implementation of a Bicycle
class that was presented in the Classes and Objects lesson:

public class Bicycle {

 // the Bicycle class has three fields
 public int cadence;
 public int gear;
 public int speed;

 // the Bicycle class has one constructor
 public Bicycle(int startCadence, int startSpeed, int startGear) {
 gear = startGear;
 cadence = startCadence;
 speed = startSpeed;
 }

 // the Bicycle class has four methods
 public void setCadence(int newValue) {
 cadence = newValue;
 }

 public void setGear(int newValue) {
 gear = newValue;
 }

 public void applyBrake(int decrement) {
 speed -= decrement;
 }

 public void speedUp(int increment) {
 speed += increment;
 }

}

A class declaration for a MountainBike class that is a subclass of
Bicycle might look like this:

public class MountainBike extends Bicycle {

 // the MountainBike subclass adds one field
 public int seatHeight;

 // the MountainBike subclass has one constructor
 public MountainBike(int startHeight, int startCadence, int

startSpeed, int startGear) {
 super(startCadence, startSpeed, startGear);
 seatHeight = startHeight;
 }

 // the MountainBike subclass adds one method
 public void setHeight(int newValue) {
 seatHeight = newValue;
 }

}

If you make this change, all classes that implement the old DoIt
interface will break because they don't implement the interface
anymore. Programmers relying on this interface will protest loudly.
Try to anticipate all uses for your interface and to specify it completely
from the beginning. Given that this is often impossible, you may need
to create more interfaces later. For example, you could create a
DoItPlus interface that extends DoIt:

public interface DoItPlus extends DoIt {
 boolean didItWork(int i, double x, String s);
 }

Now users of your code can choose to continue to use the old interface
or to upgrade to the new interface.

INHERITANCE

Definitions:

A class that is derived from another class is called a subclass (also a
derived class, extended class, or child class). The class from which the
subclass is derived is called a superclass (also a base class or a parent
class).
Excepting Object, which has no superclass, every class has one and
only one direct superclass (single inheritance). In the absence of any
other explicit superclass, every class is implicitly a subclass of Object.
Classes can be derived from classes that are derived from classes that
are derived from classes, and so on, and ultimately derived from the
topmost class, Object. Such a class is said to be descended from all the
classes in the inheritance chain stretching back to Object.
The idea of inheritance is simple but powerful: When you want to
create a new class and there is already a class that includes some of the
code that you want, you can derive your new class from the existing
class. In doing this, you can reuse the fields and methods of the existing
class without having to write (and debug!) them yourself. A subclass
inherits all the members (fields, methods, and nested classes) from its
superclass. Constructors are not members, so they are not inherited by
subclasses, but the constructor of the superclass can be invoked from
the subclass.

The Java Platform Class Hierarchy

The Object class, defined in the java.lang package, defines and
implements behavior common to all classes—including the ones that
you write. In the Java platform, many classes derive directly from
Object, other classes derive from some of those classes, and so on,
forming a hierarchy of classes.

All Classes in the Java Platform are Descendants of Object

SARVA EDUCATION (SITED) (Running- An I.T & Skill Advancement Training Programme) - 34 -

Visit us at: www.sarvaindia.com Licensed by Govt. of India ISO 9001:2008 Certified

For example, if we write: Object obj = new MountainBike(); then obj
is both an Object and a Mountainbike (until such time as obj is
assigned another object that is not a Mountainbike). This is called
implicit casting.
If, on the other hand, we write MountainBike myBike = obj;
we would get a compile-time error because obj is not known to the
compiler to be a MountainBike. However, we can tell the compiler
that we promise to assign a MountainBike to obj by explicit casting:
MountainBike myBike = (MountainBike)obj;

This cast inserts a runtime check that obj is assigned a MountainBike
so that the compiler can safely assume that obj is a MountainBike. If
obj is not a Mountainbike at runtime, an exception will be thrown.

Note: You can make a logical test as to the type of a particular object
using the instanceof operator. This can save you from a runtime error
owing to an improper cast. For example:

if (obj instanceof MountainBike) {
 MountainBike myBike = (MountainBike)obj;
}

Here the instanceof operator verifies that obj refers to a MountainBike
so that we can make the cast with knowledge that there will be no
runtime exception thrown.

Overriding and Hiding Methods

Instance Methods

An instance method in a subclass with the same signature (name, plus
the number and the type of its parameters) and return type as an
instance method in the superclass overrides the superclass's method.

The ability of a subclass to override a method allows a class to inherit
from a superclass whose behavior is "close enough" and then to
modify behavior as needed. The overriding method has the same
name, number and type of parameters, and return type as the method it
overrides. An overriding method can also return a subtype of the type
returned by the overridden method. This is called a covariant return
type.

When overriding a method, you might want to use the @Override
annotation that instructs the compiler that you intend to override a
method in the superclass. If, for some reason, the compiler detects that
the method does not exist in one of the superclasses, it will generate an
error.

Class Methods

If a subclass defines a class method with the same signature as a class
method in the superclass, the method in the subclass hides the one in
the superclass.

The distinction between hiding and overriding has important
implications. The version of the overridden method that gets invoked
is the one in the subclass. The version of the hidden method that gets
invoked depends on whether it is invoked from the superclass or the
subclass. Let's look at an example that contains two classes. The first
is Animal, which contains one instance method and one class method:

MountainBike inherits all the fields and methods of Bicycle and adds
the field seatHeight and a method to set it. Except for the constructor,
it is as if you had written a new MountainBike class entirely from
scratch, with four fields and five methods. However, you didn't have
to do all the work. This would be especially valuable if the methods
in the Bicycle class were complex and had taken substantial time to
debug.

What You Can Do in a Subclass

A subclass inherits all of the public and protected members of its
parent, no matter what package the subclass is in. If the subclass is in
the same package as its parent, it also inherits the package-private
members of the parent. You can use the inherited members as is,
replace them, hide them, or supplement them with new members:

 The inherited fields can be used directly, just like any other fields.
 You can declare a field in the subclass with the same name as the

one in the superclass, thus hiding it (not recommended).
 You can declare new fields in the subclass that are not in the

superclass.
 The inherited methods can be used directly as they are.
 You can write a new instance method in the subclass that has the

same signature as the one in the superclass, thus overriding it.
 You can write a new static method in the subclass that has the

same signature as the one in the superclass, thus hiding it.
 You can declare new methods in the subclass that are not in the

superclass.
 You can write a subclass constructor that invokes the constructor

of the superclass, either implicitly or by using the keyword super.

The following sections in this lesson will expand on these topics.

Private Members in a Superclass

A subclass does not inherit the private members of its parent class.
However, if the superclass has public or protected methods for
accessing its private fields, these can also be used by the subclass.
A nested class has access to all the private members of its enclosing
class—both fields and methods. Therefore, a public or protected
nested class inherited by a subclass has indirect access to all of the
private members of the superclass.

Casting Objects

We have seen that an object is of the data type of the class from
which it was instantiated. For example, if we write

public MountainBike myBike = new MountainBike();
then myBike is of type MountainBike.

MountainBike is descended from Bicycle and Object. Therefore, a
MountainBike is a Bicycle and is also an Object, and it can be used
wherever Bicycle or Object objects are called for.
The reverse is not necessarily true: a Bicycle may be a
MountainBike, but it isn't necessarily. Similarly, an Object may be a
Bicycle or a MountainBike, but it isn't necessarily.
Casting shows the use of an object of one type in place of another
type, among the objects permitted by inheritance and

SARVA EDUCATION (SITED) (Running- An I.T & Skill Advancement Training Programme) - 35 -

Visit us at: www.sarvaindia.com Licensed by Govt. of India ISO 9001:2008 Certified

Summary
The following table summarizes what happens when you define a
method with the same signature as a method in a superclass.

Defining a Method with the Same Signature as a Superclass's
Method

 Superclass Instance
Method

Superclass Static
Method

Subclass Instance
Method Overrides Generates a compile-

time error

Subclass Static
Method

Generates a compile-
time error Hides

Note: In a subclass, you can overload the methods inherited from the
superclass. Such overloaded methods neither hide nor override the
superclass methods—they are new methods, unique to the subclass.

Hiding Fields

Within a class, a field that has the same name as a field in the
superclass hides the superclass's field, even if their types are different.
Within the subclass, the field in the superclass cannot be referenced by
its simple name. Instead, the field must be accessed through super,
which is covered in the next section. Generally speaking, we don't
recommend hiding fields as it makes code difficult to read.

Using the Keyword super

Accessing Superclass Members

If your method overrides one of its superclass's methods, you can
invoke the overridden method through the use of the keyword super.
You can also use super to refer to a hidden field (although hiding
fields is discouraged). Consider this class, Superclass:

public class Superclass {

 public void printMethod() {
 System.out.println("Printed in Superclass.");
 }
}

Here is a subclass, called Subclass, that overrides printMethod():

public class Subclass extends Superclass {

 public void printMethod() { //overrides printMethod in

Superclass
 super.printMethod();
 System.out.println("Printed in Subclass");
 }
 public static void main(String[] args) {

 Subclass s = new Subclass();
 s.printMethod();
 }

}

Within Subclass, the simple name printMethod() refers to the one
declared in Subclass, which overrides the one in Superclass. So, to

public class Animal {
 public static void testClassMethod() {
 System.out.println("The class method in Animal.");
 }
 public void testInstanceMethod() {
 System.out.println("The instance method in Animal.");
 }
}

The second class, a subclass of Animal, is called Cat:

public class Cat extends Animal {
 public static void testClassMethod() {
 System.out.println("The class method in Cat.");
 }
 public void testInstanceMethod() {
 System.out.println("The instance method in Cat.");
 }

 public static void main(String[] args) {
 Cat myCat = new Cat();
 Animal myAnimal = myCat;
 Animal.testClassMethod();
 myAnimal.testInstanceMethod();
 }
}

The Cat class overrides the instance method in Animal and hides the

class method in Animal.

The main method in this class creates an instance of Cat and calls

testClassMethod() on the class and testInstanceMethod() on the

instance.

The output from this program is as follows:

The class method in Animal.
The instance method in Cat.

As promised, the version of the hidden method that gets invoked is
the one in the superclass, and the version of the overridden method
that gets invoked is the one in the subclass.

Modifiers

The access specifier for an overriding method can allow more, but

not less, access than the overridden method.

For example, a protected instance method in the superclass can be

made public, but not private, in the subclass.

 You will get a compile-time error if you attempt to change an

instance method in the superclass to a class method in the subclass,

and vice versa.

SARVA EDUCATION (SITED) (Running- An I.T & Skill Advancement Training Programme) - 36 -

Visit us at: www.sarvaindia.com Licensed by Govt. of India ISO 9001:2008 Certified

refer to printMethod() inherited from Superclass, Subclass must use a qualified name, using super as shown. Compiling and executing Subclass
prints the following:

Printed in Superclass.
Printed in Subclass

Subclass Constructors

The following example illustrates how to use the super keyword to invoke a superclass's constructor. Recall from the Bicycle example that
MountainBike is a subclass of Bicycle. Here is the MountainBike (subclass) constructor that calls the superclass constructor and then adds
initialization code of its own:

 public MountainBike(int startHeight, int startCadence, int startSpeed, int startGear) {
 super(startCadence, startSpeed, startGear);
 seatHeight = startHeight;
 }

Invocation of a superclass constructor must be the first line in the subclass constructor.
The syntax for calling a superclass constructor is:

super();
--or--
super(parameter list);

With super(), the superclass no-argument constructor is called. With super(parameter list), the superclass constructor with a matching parameter list
is called.

Note: If a constructor does not explicitly invoke a superclass constructor, the Java compiler automatically inserts a call to the no-argument
constructor of the superclass. If the super class does not have a no-argument constructor, you will get a compile-time error. Object does have such
a constructor, so if Object is the only superclass, there is no problem.

If a subclass constructor invokes a constructor of its superclass, either explicitly or implicitly, you might think that there will be a whole chain of
constructors called, all the way back to the constructor of Object. In fact, this is the case. It is called constructor chaining, and you need to be aware
of it when there is a long line of class descent.

Object as a Superclass

The Object class, in the java.lang package, sits at the top of the class hierarchy tree. Every class is a descendant, direct or indirect, of the Object
class. Every class you use or write inherits the instance methods of Object. You need not use any of these methods, but, if you choose to do so, you
may need to override them with code that is specific to your class. The methods inherited from Object that are discussed in this section are:

 protected Object clone() throws CloneNotSupportedException
 Creates and returns a copy of this object.

 public boolean equals(Object obj)
 Indicates whether some other object is "equal to" this one.

 protected void finalize() throws Throwable
 Called by the garbage collector on an object when garbage
 collection determines that there are no more references to the object

 public final Class getClass()
 Returns the runtime class of an object.

 public int hashCode()
 Returns a hash code value for the object.

 public String toString()
 Returns a string representation of the object.

The notify, notifyAll, and wait methods of Object all play a part in synchronizing the activities of independently running threads in a program,
which is discussed in a later lesson and won't be covered here. There are five of these methods:

 public final void notify()
 public final void notifyAll()
 public final void wait()
 public final void wait(long timeout)
 public final void wait(long timeout, int nanos)

SARVA EDUCATION (SITED) (Running- An I.T & Skill Advancement Training Programme) - 37 -

Visit us at: www.sarvaindia.com Licensed by Govt. of India ISO 9001:2008 Certified

Note: There are some subtle aspects to a number of these methods, especially the clone method.
The clone() Method

If a class, or one of its superclasses, implements the Cloneable interface, you can use the clone() method to create a copy from an existing object.
To create a clone, you write:

aCloneableObject.clone();

Object's implementation of this method checks to see whether the object on which clone() was invoked implements the Cloneable interface. If the
object does not, the method throws a CloneNotSupportedException exception. Exception handling will be covered in a later lesson. For the
moment, you need to know that clone() must be declared as

protected Object clone() throws CloneNotSupportedException
 -- or --
public Object clone() throws CloneNotSupportedException
if you are going to write a clone() method to override the one in Object.

If the object on which clone() was invoked does implement the Cloneable interface, Object's implementation of the clone() method creates an
object of the same class as the original object and initializes the new object's member variables to have the same values as the original object's
corresponding member variables.

The simplest way to make your class cloneable is to add implements Cloneable to your class's declaration. then your objects can invoke the clone()
method.

For some classes, the default behavior of Object's clone() method works just fine. If, however, an object contains a reference to an external object,
say ObjExternal, you may need to override clone() to get correct behavior. Otherwise, a change in ObjExternal made by one object will be visible
in its clone also. This means that the original object and its clone are not independent—to decouple them, you must override clone() so that it clones
the object and ObjExternal. Then the original object references ObjExternal and the clone references a clone of ObjExternal, so that the object and
its clone are truly independent.

The equals() Method
The equals() method compares two objects for equality and returns true if they are equal. The equals() method provided in the Object class uses the
identity operator (==) to determine whether two objects are equal. For primitive data types, this gives the correct result. For objects, however, it
does not. The equals() method provided by Object tests whether the object references are equal—that is, if the objects compared are the exact same
object.

To test whether two objects are equal in the sense of equivalency (containing the same information), you must override the equals() method. Here is
an example of a Book class that overrides equals():

public class Book {
 ...
 public boolean equals(Object obj) {
 if (obj instanceof Book)
 return ISBN.equals((Book)obj.getISBN());
 else
 return false;
 }
}

Consider this code that tests two instances of the Book class for equality:

Book firstBook = new Book("0201914670"); //Swing Tutorial, 2nd edition
Book secondBook = new Book("0201914670");
if (firstBook.equals(secondBook)) {
 System.out.println("objects are equal");
} else {
 System.out.println("objects are not equal");
}

SARVA EDUCATION (SITED) (Running- An I.T & Skill Advancement Training Programme) - 38 -

Visit us at: www.sarvaindia.com Licensed by Govt. of India ISO 9001:2008 Certified

This program displays objects are equal even though firstBook and secondBook reference two distinct objects. They are considered equal because
the objects compared contain the same ISBN number.

You should always override the equals() method if the identity operator is not appropriate for your class.

Note: If you override equals(), you must override hashCode() as well.

The finalize() Method
The Object class provides a callback method, finalize(), that may be invoked on an object when it becomes garbage. Object's implementation of
finalize() does nothing—you can override finalize() to do cleanup, such as freeing resources.

The finalize() method may be called automatically by the system, but when it is called, or even if it is called, is uncertain. Therefore, you should not
rely on this method to do your cleanup for you. For example, if you don't close file descriptors in your code after performing I/O and you expect
finalize() to close them for you, you may run out of file descriptors.

The getClass() Method
You cannot override getClass.

The getClass() method returns a Class object, which has methods you can use to get information about the class, such as its name
(getSimpleName()), its superclass (getSuperclass()), and the interfaces it implements (getInterfaces()). For example, the following method gets and
displays the class name of an object:

void printClassName(Object obj) {
 System.out.println("The object's class is "
 obj.getClass().getSimpleName());
}

The Class class, in the java.lang package, has a large number of methods (more than 50). For example, you can test to see if the class is an
annotation (isAnnotation()), an interface (isInterface()), or an enumeration (isEnum()). You can see what the object's fields are (getFields()) or what
its methods are (getMethods()), and so on.

The hashCode() Method
The value returned by hashCode() is the object's hash code, which is the object's memory address in hexadecimal.

By definition, if two objects are equal, their hash code must also be equal. If you override the equals() method, you change the way two objects are
equated and Object's implementation of hashCode() is no longer valid. Therefore, if you override the equals() method, you must also override the
hashCode() method as well.

Writing Final Classes and Methods

You can declare some or all of a class's methods final. You use the
final keyword in a method declaration to indicate that the method
cannot be overridden by subclasses. The Object class does this—a
number of its methods are final. You might wish to make a method
final if it has an implementation that should not be changed and it is
critical to the consistent state of the object. For example, you might
want to make the getFirstPlayer method in this ChessAlgorithm class
final:

class ChessAlgorithm {
 enum ChessPlayer { WHITE, BLACK }
 ...
 final ChessPlayer getFirstPlayer() {
 return ChessPlayer.WHITE;
 }
 ...

The toString() Method
You should always consider overriding the toString() method in your
classes.

The Object's toString() method returns a String representation of the
object, which is very useful for debugging. The String representation
for an object depends entirely on the object, which is why you need
to override toString() in your classes.

You can use toString() along with System.out.println() to display a
text representation of an object, such as an instance of Book:

System.out.println(firstBook.toString());

which would, for a properly overridden toString() method, print
something useful, like this:
ISBN: 0201914670; The JFC Swing Tutorial; A Guide to
Constructing GUIs, 2nd Edition

SARVA EDUCATION (SITED) (Running- An I.T & Skill Advancement Training Programme) - 39 -

Visit us at: www.sarvaindia.com Licensed by Govt. of India ISO 9001:2008 Certified

}

Methods called from constructors should generally be declared final. If a constructor calls a non-final method, a subclass may redefine that method
with surprising or undesirable results.

Note: that you can also declare an entire class final — this prevents the class from being subclassed. This is particularly useful, for example, when
creating an immutable class like the String class.

Abstract Methods and Classes

An abstract class is a class that is declared abstract—it may or may not include abstract methods. Abstract classes cannot be instantiated, but they
can be subclassed.

An abstract method is a method that is declared without an implementation (without braces, and followed by a semicolon), like this:

abstract void moveTo(double deltaX, double deltaY);
If a class includes abstract methods, the class itself must be declared abstract, as in:
public abstract class GraphicObject {
 // declare fields
 // declare non-abstract methods
 abstract void draw();
}

When an abstract class is subclassed, the subclass usually provides implementations for all of the abstract methods in its parent class. However, if it
does not, the subclass must also be declared abstract.

Note: All of the methods in an interface (see the Interfaces section) are implicitly abstract, so the abstract modifier is not used with interface
methods (it could be—it's just not necessary).

Abstract Classes versus Interfaces

Unlike interfaces, abstract classes can contain fields that are not static and final, and they can contain implemented methods. Such abstract classes
are similar to interfaces, except that they provide a partial implementation, leaving it to subclasses to complete the implementation. If an abstract
class contains only abstract method declarations, it should be declared as an interface instead.

Multiple interfaces can be implemented by classes anywhere in the class hierarchy, whether or not they are related to one another in any way. Think
of Comparable or Cloneable, for example.

By comparison, abstract classes are most commonly subclassed to share pieces of implementation. A single abstract class is subclassed by similar
classes that have a lot in common (the implemented parts of the abstract class), but also have some differences (the abstract methods).

An Abstract Class Example

In an object-oriented drawing application, you can draw circles, rectangles, lines, Bezier curves, and many other graphic objects. These objects all
have certain states (for example: position, orientation, line color, fill color) and behaviors (for example: moveTo, rotate, resize, draw) in common.
Some of these states and behaviors are the same for all graphic objects—for example: position, fill color, and moveTo. Others require different
implementations—for example, resize or draw. All GraphicObjects must know how to draw or resize themselves; they just differ in how they do it.
This is a perfect situation for an abstract superclass. You can take advantage of the similarities and declare all the graphic objects to inherit from the
same abstract parent object—for example, GraphicObject, as shown in the following figure.

Classes Rectangle, Line, Bezier, and Circle inherit from GraphicObject

SARVA EDUCATION (SITED) (Running- An I.T & Skill Advancement Training Programme) - 40 -

Visit us at: www.sarvaindia.com Licensed by Govt. of India ISO 9001:2008 Certified

First, you declare an abstract class, GraphicObject, to provide member variables and methods that are wholly shared by all subclasses, such as the
current position and the moveTo method. GraphicObject also declares abstract methods for methods, such as draw or resize, that need to be
implemented by all subclasses but must be implemented in different ways. The GraphicObject class can look something like this:

abstract class GraphicObject {
 int x, y;
 ...
 void moveTo(int newX, int newY) {
 ...
 }
 abstract void draw();
 abstract void resize();
}

Each non-abstract subclass of GraphicObject, such as Circle and Rectangle, must provide implementations for the draw and resize methods:

class Circle extends GraphicObject {
 void draw() {
 ...
 }
 void resize() {
 ...
 }
}
class Rectangle extends GraphicObject {
 void draw() {
 ...
 }
 void resize() {
 ...
 }
}

When an Abstract Class Implements an Interface

In the section on Interfaces , it was noted that a class that implements an interface must implement all of the interface's methods. It is possible,
however, to define a class that does not implement all of the interface methods, provided that the class is declared to be abstract. For example,

abstract class X implements Y {
 // implements all but one method of Y
}

class XX extends X {
 // implements the remaining method in Y
}

In this case, class X must be abstract because it does not fully implement Y, but class XX does, in fact, implement Y.

Class Members

An abstract class may have static fields and static methods. You can use these static members with a class reference—for example,
AbstractClass.staticMethod()—as you would with any other class.

SARVA EDUCATION (SITED) (Running- An I.T & Skill Advancement Training Programme) - 41 -

Visit us at: www.sarvaindia.com Licensed by Govt. of India ISO 9001:2008 Certified

CHAPTER - 9

NUMBERS AND STRINGS

THE NUMBERS CLASSES

When working with numbers, most of the time you use the primitive types in your code. For example:

int i = 500;
float gpa = 3.65f;
byte mask = 0xff;

There are, however, reasons to use objects in place of primitives, and the Java platform provides wrapper classes for each of the primitive data
types. These classes "wrap" the primitive in an object. Often, the wrapping is done by the compiler—if you use a primitive where an object is
expected, the compiler boxes the primitive in its wrapper class for you. Similarly, if you use a number object when a primitive is expected, the
compiler unboxes the object for you.

Here is an example of boxing and unboxing:

Integer x, y;
x = 12;
y = 15;
System.out.println(x+y);

When x and y are assigned integer values, the compiler boxes the integers because x and y are integer objects. In the println() statement, x and y are
unboxed so that they can be added as integers.

All of the numeric wrapper classes are subclasses of the abstract class Number:

Note: There are four other subclasses of Number that are not discussed here. BigDecimal and BigInteger are used for high-precision calculations.
AtomicInteger and AtomicLong are used for multi-threaded applications.

There are three reasons that you might use a Number object rather than a primitive:

1. As an argument of a method that expects an object (often used when manipulating collections of numbers).

SARVA EDUCATION (SITED) (Running- An I.T & Skill Advancement Training Programme) - 42 -

Visit us at: www.sarvaindia.com Licensed by Govt. of India ISO 9001:2008 Certified

2. To use constants defined by the class, such as MIN_VALUE and MAX_VALUE, that provide the upper and lower bounds of the data
type.

3. To use class methods for converting values to and from other primitive types, for converting to and from strings, and for converting
between number systems (decimal, octal, hexadecimal, binary).

The following table lists the instance methods that all the subclasses of the Number class implement.

Methods Implemented by all Subclasses of Number

Method Description

byte byteValue()
short shortValue()
int intValue()
long longValue()
float floatValue()
double doubleValue()

Converts the value of this Number object to the primitive data type
returned.

int compareTo(Byte anotherByte)
int compareTo(Double anotherDouble)
int compareTo(Float anotherFloat)
int compareTo(Integer anotherInteger)
int compareTo(Long anotherLong)
int compareTo(Short anotherShort)

Compares this Number object to the argument.

boolean equals(Object obj)

Determines whether this number object is equal to the argument.
The methods return true if the argument is not null and is an object
of the same type and with the same numeric value.
There are some extra requirements for Double and Float objects
that are described in the Java API documentation.

Each Number class contains other methods that are useful for converting numbers to and from strings and for converting between number systems.
The following table lists these methods in the Integer class. Methods for the other Number subclasses are similar:

Conversion Methods, Integer Class

Method Description

static Integer decode(String s) Decodes a string into an integer. Can accept string representations
of decimal, octal, or hexadecimal numbers as input.

static int parseInt(String s) Returns an integer (decimal only).

static int parseInt(String s, int radix)
Returns an integer, given a string representation of decimal,
binary, octal, or hexadecimal (radix equals 10, 2, 8, or 16
respectively) numbers as input.

String toString() Returns a String object representing the value of this Integer.

static String toString(int i) Returns a String object representing the specified integer.

static Integer valueOf(int i) Returns an Integer object holding the value of the specified
primitive.

static Integer valueOf(String s) Returns an Integer object holding the value of the specified string
representation.

static Integer valueOf(String s, int radix) Returns an Integer object holding the integer value of the specified
string representation, parsed with the value of radix. For example,

SARVA EDUCATION (SITED) (Running- An I.T & Skill Advancement Training Programme) - 43 -

Visit us at: www.sarvaindia.com Licensed by Govt. of India ISO 9001:2008 Certified

if s = "333" and radix = 8, the method returns the base-ten integer
equivalent of the octal number 333.

Formatting Numeric Print Output

Earlier you saw the use of the print and println methods for printing strings to standard output (System.out). Since all numbers can be converted to
strings (as you will see later in this lesson), you can use these methods to print out an arbitrary mixture of strings and numbers. The Java
programming language has other methods, however, that allow you to exercise much more control over your print output when numbers are
included.

The printf and format Methods

The java.io package includes a PrintStream class that has two formatting methods that you can use to replace print and println. These methods,
format and printf, are equivalent to one another.

The familiar System.out that you have been using happens to be a PrintStream object, so you can invoke PrintStream methods on System.out. Thus,
you can use format or printf anywhere in your code where you have previously been using print or println. For example,

System.out.format(.....);

The syntax for these two java.io.PrintStream methods is the same:

public PrintStream format(String format, Object... args)

where format is a string that specifies the formatting to be used and args is a list of the variables to be printed using that formatting. A simple
example would be

System.out.format("The value of the float variable is %f, while the value of the " +
 "integer variable is %d, and the string is %s", floatVar, intVar, stringVar);

The first parameter, format, is a format string specifying how the objects in the second parameter, args, are to be formatted.

The format string contains plain text as well as format specifiers, which are special characters that format the arguments of Object... args. (The
notation Object... args is called varargs, which means that the number of arguments may vary.)

Format specifiers begin with a percent sign (%) and end with a converter. The converter is a character indicating the type of argument to be
formatted. In between the percent sign (%) and the converter you can have optional flags and specifiers.

There are many converters, flags, and specifiers, which are documented in java.util.Formatter

Here is a basic example:

int i = 461012;
System.out.format("The value of i is: %d%n", i);

The %d specifies that the single variable is a decimal integer. The %n is a platform-independent newline character. The output is:

The value of i is: 461012

The printf and format methods are overloaded. Each has a version with the following syntax:

public PrintStream format(Locale l, String format, Object... args)

To print numbers in the French system (where a comma is used in place of the decimal place in the English representation of floating point
numbers), for example, you would use:

System.out.format(Locale.FRANCE, "The value of the float variable is %f, while the value of the " +

SARVA EDUCATION (SITED) (Running- An I.T & Skill Advancement Training Programme) - 44 -

Visit us at: www.sarvaindia.com Licensed by Govt. of India ISO 9001:2008 Certified

 "integer variable is %d, and the string is %s%n", floatVar, intVar, stringVar);

An Example

The following table lists some of the converters and flags that are used in the sample program, TestFormat.java, that follows the table.

Converters and Flags Used in TestFormat.java

Converter Flag Explanation

d A decimal integer.

f A float.

n A new line character appropriate to the platform running the application. You should
always use %n, rather than \n.

tB A date & time conversion—locale-specific full name of month.

td, te A date & time conversion—2-digit day of month. td has leading zeroes as needed, te
does not.

ty, tY A date & time conversion—ty = 2-digit year, tY = 4-digit year.

tl A date & time conversion—hour in 12-hour clock.

tM A date & time conversion—minutes in 2 digits, with leading zeroes as necessary.

tp A date & time conversion—locale-specific am/pm (lower case).

tm A date & time conversion—months in 2 digits, with leading zeroes as necessary.

tD A date & time conversion—date as %tm%td%ty

 08 Eight characters in width, with leading zeroes as necessary.

 + Includes sign, whether positive or negative.

 , Includes locale-specific grouping characters.

 - Left-justified..

 .3 Three places after decimal point.

 10.3 Ten characters in width, right justified, with three places after decimal point.

The following program shows some of the formatting that you can do with format. The output is shown within double quotes in the embedded
comment:

import java.util.Calendar;
import java.util.Locale;

public class TestFormat {

 public static void main(String[] args) {
 long n = 461012;
 System.out.format("%d%n", n); // --> "461012"
 System.out.format("%08d%n", n); // --> "00461012"
 System.out.format("%+8d%n", n); // --> " +461012"
 System.out.format("%,8d%n", n); // --> " 461,012"
 System.out.format("%+,8d%n%n", n); // --> "+461,012"

 double pi = Math.PI;

SARVA EDUCATION (SITED) (Running- An I.T & Skill Advancement Training Programme) - 45 -

Visit us at: www.sarvaindia.com Licensed by Govt. of India ISO 9001:2008 Certified

 System.out.format("%f%n", pi); // --> "3.141593"
 System.out.format("%.3f%n", pi); // --> "3.142"
 System.out.format("%10.3f%n", pi); // --> " 3.142"
 System.out.format("%-10.3f%n", pi); // --> "3.142"
 System.out.format(Locale.FRANCE,
 "%-10.4f%n%n", pi); // --> "3,1416"

 Calendar c = Calendar.getInstance();
 System.out.format("%tB %te, %tY%n", c, c, c); // --> "May 29, 2006"
 System.out.format("%tl:%tM %tp%n", c, c, c); // --> "2:34 am"
 System.out.format("%tD%n", c); // --> "05/29/06"
 }
}

Note: The discussion in this section covers just the basics of the format and printf methods. Further detail can be found in the Basic I/O section
titled "Formatting". Using String.format to create strings is covered in Strings.

The DecimalFormat Class

You can use the java.text.DecimalFormat class to control the display of leading and trailing zeros, prefixes and suffixes, grouping (thousands)
separators, and the decimal separator. DecimalFormat offers a great deal of flexibility in the formatting of numbers, but it can make your code more
complex.

The example that follows creates a DecimalFormat object, myFormatter, by passing a pattern string to the DecimalFormat constructor. The format()
method, which DecimalFormat inherits from NumberFormat, is then invoked by myFormatter—it accepts a double value as an argument and
returns the formatted number in a string:

Here is a sample program that illustrates the use of DecimalFormat:

import java.text.*;

public class DecimalFormatDemo {

 static public void customFormat(String pattern, double value) {
 DecimalFormat myFormatter = new DecimalFormat(pattern);
 String output = myFormatter.format(value);
 System.out.println(value + " " + pattern + " " + output);
 }

 static public void main(String[] args) {

 customFormat("###,###.###", 123456.789);
 customFormat("###.##", 123456.789);
 customFormat("000000.000", 123.78);
 customFormat("$###,###.###", 12345.67);
 }
}

The output is:

123456.789 ###,###.### 123,456.789
123456.789 ###.## 123456.79
123.78 000000.000 000123.780
12345.67 $###,###.### $12,345.67

The following table explains each line of output.

DecimalFormat.java Output

Value Pattern Output Explanation

SARVA EDUCATION (SITED) (Running- An I.T & Skill Advancement Training Programme) - 46 -

Visit us at: www.sarvaindia.com Licensed by Govt. of India ISO 9001:2008 Certified

123456.789 ###,###.### 123,456.789 The pound sign (#) denotes a digit, the comma is a placeholder for the grouping separator, and
the period is a placeholder for the decimal separator.

123456.789 ###.## 123456.79 The value has three digits to the right of the decimal point, but the pattern has only two. The
format method handles this by rounding up.

123.78 000000.000 000123.780 The pattern specifies leading and trailing zeros, because the 0 character is used instead of the
pound sign (#).

12345.67 $###,###.### $12,345.67 The first character in the pattern is the dollar sign ($). Note that it immediately precedes the
leftmost digit in the formatted output.

Beyond Basic Arithmetic

The Java programming language supports basic arithmetic with its arithmetic operators: +, -, *, /, and %. The Math class in the java.lang package
provides methods and constants for doing more advanced mathematical computation.

The methods in the Math class are all static, so you call them directly from the class, like this:

Math.cos(angle);

Note : Using the static import language feature, you don't have to write Math in front of every math function:
import static java.lang.Math.*;
This allows you to invoke the Math class methods by their simple names. For example:
cos(angle);

Constants and Basic Methods

The Math class includes two constants:

 Math.E, which is the base of natural logarithms, and
 Math.PI, which is the ratio of the circumference of a circle to its diameter.

The Math class also includes more than 40 static methods. The following table lists a number of the basic methods.

Basic Math Methods

Method Description

double abs(double d)
float abs(float f)
int abs(int i)
long abs(long lng)

Returns the absolute value of the argument.

double ceil(double d) Returns the smallest integer that is greater than or equal to the argument.
Returned as a double.

double floor(double d) Returns the largest integer that is less than or equal to the argument.
Returned as a double.

double rint(double d) Returns the integer that is closest in value to the argument. Returned as a
double.

long round(double d)
int round(float f)

Returns the closest long or int, as indicated by the method's return type, to
the argument.

double min(double arg1, double arg2)
float min(float arg1, float arg2)
int min(int arg1, int arg2)
long min(long arg1, long arg2)

Returns the smaller of the two arguments.

SARVA EDUCATION (SITED) (Running- An I.T & Skill Advancement Training Programme) - 47 -

Visit us at: www.sarvaindia.com Licensed by Govt. of India ISO 9001:2008 Certified

double max(double arg1, double arg2)
float max(float arg1, float arg2)
int max(int arg1, int arg2)
long max(long arg1, long arg2)

Returns the larger of the two arguments.

The following program, BasicMathDemo , illustrates how to use some of these methods:

public class BasicMathDemo {
 public static void main(String[] args) {
 double a = -191.635;
 double b = 43.74;
 int c = 16, d = 45;

 System.out.printf("The absolute value of %.3f is %.3f%n", a, Math.abs(a));
 System.out.printf("The ceiling of %.2f is %.0f%n", b, Math.ceil(b));
 System.out.printf("The floor of %.2f is %.0f%n", b, Math.floor(b));
 System.out.printf("The rint of %.2f is %.0f%n", b, Math.rint(b));
 System.out.printf("The max of %d and %d is %d%n",c, d, Math.max(c, d));
 System.out.printf("The min of of %d and %d is %d%n",c, d, Math.min(c, d));

 }
}

Here's the output from this program:
The absolute value of -191.635 is 191.635
The ceiling of 43.74 is 44
The floor of 43.74 is 43
The rint of 43.74 is 44
The max of 16 and 45 is 45
The min of 16 and 45 is 16

Exponential and Logarithmic Methods

The next table lists exponential and logarithmic methods of the Math class.

Exponential and Logarithmic Methods

Method Description

double exp(double d) Returns the base of the natural logarithms, e, to the power of the
argument.

double log(double d) Returns the natural logarithm of the argument.

double pow(double base, double exponent) Returns the value of the first argument raised to the power of the second
argument.

double sqrt(double d) Returns the square root of the argument.

The following program, ExponentialDemo , displays the value of e, then calls each of the methods listed in the previous table on arbitrarily chosen
numbers:

public class ExponentialDemo {
 public static void main(String[] args) {
 double x = 11.635;
 double y = 2.76;

 System.out.printf("The value of e is %.4f%n", Math.E);
 System.out.printf("exp(%.3f) is %.3f%n", x, Math.exp(x));

SARVA EDUCATION (SITED) (Running- An I.T & Skill Advancement Training Programme) - 48 -

Visit us at: www.sarvaindia.com Licensed by Govt. of India ISO 9001:2008 Certified

 System.out.printf("log(%.3f) is %.3f%n", x, Math.log(x));
 System.out.printf("pow(%.3f, %.3f) is %.3f%n", x, y, Math.pow(x, y));
 System.out.printf("sqrt(%.3f) is %.3f%n", x, Math.sqrt(x));
 }
}

Here's the output you'll see when you run ExponentialDemo:

The value of e is 2.7183
exp(11.635) is 112983.831
log(11.635) is 2.454
pow(11.635, 2.760) is 874.008
sqrt(11.635) is 3.411

Trigonometric Methods

The Math class also provides a collection of trigonometric functions, which are summarized in the following table. The value passed into each of
these methods is an angle expressed in radians. You can use the toRadians method to convert from degrees to radians.

Trigonometric Methods

Method Description

double sin(double d) Returns the sine of the specified double value.

double cos(double d) Returns the cosine of the specified double value.

double tan(double d) Returns the tangent of the specified double value.

double asin(double d) Returns the arcsine of the specified double value.

double acos(double d) Returns the arccosine of the specified double value.

double atan(double d) Returns the arctangent of the specified double value.

double atan2(double y, double x) Converts rectangular coordinates (x, y) to polar coordinate (r, theta)
and returns theta.

double toDegrees(double d)
double toRadians(double d) Converts the argument to degrees or radians.

Here's a program, TrigonometricDemo , that uses each of these methods to compute various trigonometric values for a 45-degree angle:

public class TrigonometricDemo {
 public static void main(String[] args) {
 double degrees = 45.0;
 double radians = Math.toRadians(degrees);

 System.out.format("The value of pi is %.4f%n", Math.PI);
 System.out.format("The sine of %.1f degrees is %.4f%n", degrees,
 Math.sin(radians));
 System.out.format("The cosine of %.1f degrees is %.4f%n", degrees,
 Math.cos(radians));
 System.out.format("The tangent of %.1f degrees is %.4f%n", degrees,
 Math.tan(radians));
 System.out.format("The arcsine of %.4f is %.4f degrees %n",
 Math.sin(radians),
 Math.toDegrees(Math.asin(Math.sin(radians))));
 System.out.format("The arccosine of %.4f is %.4f degrees %n",
 Math.cos(radians),
 Math.toDegrees(Math.acos(Math.cos(radians))));
 System.out.format("The arctangent of %.4f is %.4f degrees %n",

SARVA EDUCATION (SITED) (Running- An I.T & Skill Advancement Training Programme) - 49 -

Visit us at: www.sarvaindia.com Licensed by Govt. of India ISO 9001:2008 Certified

 Math.tan(radians),
 Math.toDegrees(Math.atan(Math.tan(radians))));

 }
}

The output of this program is as follows:

The value of pi is 3.1416
The sine of 45.0 degrees is 0.7071
The cosine of 45.0 degrees is 0.7071
The tangent of 45.0 degrees is 1.0000
The arcsine of 0.7071 is 45.0000 degrees
The arccosine of 0.7071 is 45.0000 degrees
The arctangent of 1.0000 is 45.0000 degrees

Random Numbers

The random() method returns a pseudo-randomly selected number between 0.0 and 1.0. The range includes 0.0 but not 1.0. In other words: 0.0 <=
Math.random() < 1.0. To get a number in a different range, you can perform arithmetic on the value returned by the random method. For example,
to generate an integer between 0 and 9, you would write:

int number = (int)(Math.random() * 10);

By multiplying the value by 10, the range of possible values becomes 0.0 <= number < 10.0.

Using Math.random works well when you need to generate a single random number. If you need to generate a series of random numbers, you
should create an instance of java.util.Random and invoke methods on that object to generate numbers.

CHARACTERS

Most of the time, if you are using a single character value, you will use the primitive char type.

For example:

char ch = 'a';
char uniChar = '\u039A'; // Unicode for uppercase Greek omega character
char[] charArray ={ 'a', 'b', 'c', 'd', 'e' }; // an array of chars

There are times, however, when you need to use a char as an object—for example, as a method argument where an object is expected. The Java
programming language provides a wrapper class that "wraps" the char in a Character object for this purpose. An object of type Character contains a
single field, whose type is char. This Character class also offers a number of useful class (i.e., static) methods for manipulating characters.

You can create a Character object with the Character constructor:

Character ch = new Character('a');

The Java compiler will also create a Character object for you under some circumstances. For example, if you pass a primitive char into a method
that expects an object, the compiler automatically converts the char to a Character for you.

This feature is called autoboxing—or unboxing, if the conversion goes the other way.

Here is an example of boxing,

Character ch = 'a'; // the primitive char 'a' is boxed into the Character object ch
and here is an example of both boxing and unboxing,
Character test(Character c) {...} // method parameter and return type = Character object

char c = test('x'); // primitive 'x' is boxed for method test, return is unboxed to char 'c'

SARVA EDUCATION (SITED) (Running- An I.T & Skill Advancement Training Programme) - 50 -

Visit us at: www.sarvaindia.com Licensed by Govt. of India ISO 9001:2008 Certified

Note: The Character class is immutable, so that once it is created, a Character object cannot be changed.

The following table lists some of the most useful methods in the Character class, but is not exhaustive. For a complete listing of all methods in this
class (there are more than 50), refer to the java.lang.Character API specification.

Useful Methods in the Character Class

Method Description

boolean isLetter(char ch)
boolean isDigit(char ch) Determines whether the specified char value is a letter or a digit, respectively.

boolean isWhitespace(char ch) Determines whether the specified char value is white space.

boolean isUpperCase(char ch)
boolean isLowerCase(char ch) Determines whether the specified char value is uppercase or lowercase, respectively.

char toUpperCase(char ch)
char toLowerCase(char ch) Returns the uppercase or lowercase form of the specified char value.

toString(char ch) Returns a String object representing the specified character value—that is, a one-character string.

Escape Sequences

A character preceded by a backslash (\) is an escape sequence and has special meaning to the compiler. The newline character (\n) has been used
frequently in this tutorial in System.out.println() statements to advance to the next line after the string is printed. The following table shows the Java
escape sequences:

Escape Sequences

Escape Sequence Description

\t Insert a tab in the text at this point.

\b Insert a backspace in the text at this point.

\n Insert a newline in the text at this point.

\r Insert a carriage return in the text at this point.

\f Insert a formfeed in the text at this point.

\' Insert a single quote character in the text at this
point.

\" Insert a double quote character in the text at this
point.

\\ Insert a backslash character in the text at this
point.

When an escape sequence is encountered in a print statement, the compiler interprets it accordingly. For example, if you want to put quotes within
quotes you must use the escape sequence, \", on the interior quotes. To print the sentence

She said "Hello!" to me.
you would write
System.out.println("She said \"Hello!\" to me.");

SARVA EDUCATION (SITED) (Running- An I.T & Skill Advancement Training Programme) - 51 -

Visit us at: www.sarvaindia.com Licensed by Govt. of India ISO 9001:2008 Certified

STRINGS

Strings, which are widely used in Java programming, are a sequence of characters. In the Java programming language, strings are objects.

The Java platform provides the String class to create and manipulate
strings.

 // reverse array of chars
 for (int j = 0; j < len; j++) {
 charArray[j] = tempCharArray[len - 1 - j];
 }

 String reversePalindrome = new String(charArray);
 System.out.println(reversePalindrome);
 }
}

Running the program produces this output:

doT saw I was toD

To accomplish the string reversal, the program had to convert the
string to an array of characters (first for loop), reverse the array into a
second array (second for loop), and then convert back to a string. The
String class includes a method, getChars(), to convert a string, or a
portion of a string, into an array of characters so we could replace the
first for loop in the program above with

palindrome.getChars(0, len, tempCharArray, 0);

Concatenating Strings

The String class includes a method for concatenating two strings:

string1.concat(string2);

This returns a new string that is string1 with string2 added to it at the
end.

You can also use the concat() method with string literals, as in:

"My name is ".concat("Rumplestiltskin");
Strings are more commonly concatenated with the + operator, as

in
"Hello," + " world" + "!"
which results in
"Hello, world!"
The + operator is widely used in print statements. For example:
String string1 = "saw I was ";
System.out.println("Dot " + string1 + "Tod");

which prints
Dot saw I was Tod

Such a concatenation can be a mixture of any objects. For each object
that is not a String, its toString() method is called to convert it to a
String.

Creating Strings

The most direct way to create a string is to write:

String greeting = "Hello world!";

In this case, "Hello world!" is a string literal—a series of characters
in your code that is enclosed in double quotes. Whenever it
encounters a string literal in your code, the compiler creates a String
object with its value—in this case, Hello world!.

As with any other object, you can create String objects by using the
new keyword and a constructor. The String class has 11 constructors
that allow you to provide the initial value of the string using different
sources, such as an array of characters:

char[] helloArray = { 'h', 'e', 'l', 'l', 'o', '.'};
String helloString = new String(helloArray);
System.out.println(helloString);

The last line of this code snippet displays hello.

Note: The String class is immutable, so that once it is created a
String object cannot be changed. The String class has a number of
methods, some of which will be discussed below, that appear to
modify strings. Since strings are immutable, what these methods
really do is create and return a new string that contains the result of
the operation.

String Length

Methods used to obtain information about an object are known as
accessor methods. One accessor method that you can use with strings
is the length() method, which returns the number of characters
contained in the string object.

After the following two lines of code have been executed, len equals
17:

String palindrome = "Dot saw I was Tod";
int len = palindrome.length();

A palindrome is a word or sentence that is symmetric—it is spelled
the same forward and backward, ignoring case and punctuation. Here
is a short and inefficient program to reverse a palindrome string.

It invokes the String method charAt(i), which returns the ith character
in the string, counting from 0.

public class StringDemo {
 public static void main(String[] args) {
 String palindrome = "Dot saw I was Tod";
 int len = palindrome.length();
 char[] tempCharArray = new char[len];
 char[] charArray = new char[len];

 // put original string in an array of chars
 for (int i = 0; i < len; i++) {
 tempCharArray[i] = palindrome.charAt(i);
 }

SARVA EDUCATION (SITED) (Running- An I.T & Skill Advancement Training Programme) - 52 -

Visit us at: www.sarvaindia.com Licensed by Govt. of India ISO 9001:2008 Certified

Note: The Java programming language does not permit literal strings to span lines in source files, so you must use the + concatenation operator at
the end of each line in a multi-line string. For example,

String quote = "Now is the time for all good " +
 "men to come to the aid of their country.";
Breaking strings between lines using the + concatenation operator is, once again, very common in print statements.

Creating Format Strings

The following is the output from the program when you use 4.5 and
87.2 for the command-line arguments:

a + b = 91.7
a - b = -82.7
a * b = 392.4
a / b = 0.0516055
a % b = 4.5

Note: Each of the Number subclasses that wrap primitive numeric
types also provides a parseXXXX() method (for example,
parseFloat()) that can be used to convert strings to primitive numbers.
Since a primitive type is returned instead of an object, the parseFloat()
method is more direct than the valueOf() method. For example, in the
ValueOfDemo program, we could use:

float a = Float.parseFloat(args[0]);
float b = Float.parseFloat(args[1]);

Converting Numbers to Strings

Sometimes you need to convert a number to a string because you need
to operate on the value in its string form. There are several easy ways
to convert a number to a string:

int i;
String s1 = "" + i; //Concatenate "i" with an empty string;
 //conversion is handled for you.

or
String s2 = String.valueOf(i); //The valueOf class method.

Each of the Number subclasses includes a class method, toString(),
that will convert its primitive type to a string. For example:

int i;
double d;
String s3 = Integer.toString(i);
String s4 = Double.toString(d);

The ToStringDemo example uses the toString method to convert a
number to a string. The program then uses some string methods to
compute the number of digits before and after the decimal point:

public class ToStringDemo {

 public static void main(String[] args) {
 double d = 858.48;
 String s = Double.toString(d);

 int dot = s.indexOf('.');

 System.out.println(dot + " digits before decimal point.");
 System.out.println((s.length() - dot - 1) +

You have seen the use of the printf() and format() methods to print
output with formatted numbers. The String class has an equivalent
class method, format(), that returns a String object rather than a
PrintStream object.

Using String's static format() method allows you to create a
formatted string that you can reuse, as opposed to a one-time print
statement. For example, instead of

System.out.printf("The value of the float variable is %f, while the
value of the " +
 "integer variable is %d, and the string is %s", floatVar,
intVar, stringVar);

you can write:

String fs;
fs = String.format("The value of the float variable is %f, while the
value of the " +
 "integer variable is %d, and the string is %s", floatVar,
intVar, stringVar);
System.out.println(fs);

Converting Between Numbers and Strings

Converting Strings to Numbers

Frequently, a program ends up with numeric data in a string object—
a value entered by the user, for example.

The Number subclasses that wrap primitive numeric types (Byte,
Integer, Double, Float, Long, and Short) each provide a class method
named valueOf that converts a string to an object of that type. Here is
an example, ValueOfDemo , that gets two strings from the command
line, converts them to numbers, and performs arithmetic operations
on the values:

public class ValueOfDemo {
 public static void main(String[] args) {

 //this program requires two arguments on the
command line
 if (args.length == 2) {
 //convert strings to numbers
 float a = (Float.valueOf(args[0])).floatValue();
 float b = (Float.valueOf(args[1])).floatValue();

 //do some arithmetic
 System.out.println("a + b = " + (a + b));
 System.out.println("a - b = " + (a - b));
 System.out.println("a * b = " + (a * b));
 System.out.println("a / b = " + (a / b));
 System.out.println("a % b = " + (a % b));
 } else {
 System.out.println("This program requires two command-
line arguments.");
 }
 }
}

SARVA EDUCATION (SITED) (Running- An I.T & Skill Advancement Training Programme) - 53 -

Visit us at: www.sarvaindia.com Licensed by Govt. of India ISO 9001:2008 Certified

 " digits after decimal point.");
 }
}

The output of this program is:

3 digits before decimal point.
2 digits after decimal point.

Manipulating Characters in a String

The String class has a number of methods for examining the contents of strings, finding characters or substrings within a string, changing case, and
other tasks.

Getting Characters and Substrings by Index

You can get the character at a particular index within a string by invoking the charAt() accessor method. The index of the first character is 0, while
the index of the last character is length()-1. For example, the following code gets the character at index 9 in a string:

String anotherPalindrome = "Niagara. O roar again!";
char aChar = anotherPalindrome.charAt(9);

Indices begin at 0, so the character at index 9 is 'O', as illustrated in the following figure:

If you want to get more than one consecutive character from a string, you can use the substring method. The substring method has two versions, as
shown in the following table:

The substring Methods in the String Class

Method Description

String substring(int beginIndex, int endIndex)
Returns a new string that is a substring of this string. The first integer argument
specifies the index of the first character. The second integer argument is the index
of the last character + 1.

String substring(int beginIndex)
Returns a new string that is a substring of this string. The integer argument
specifies the index of the first character. Here, the returned substring extends to the
end of the original string.

The following code gets from the Niagara palindrome the substring that extends from index 11 up to, but not including, index 15, which is the word
"roar":

String anotherPalindrome = "Niagara. O roar again!";
String roar = anotherPalindrome.substring(11, 15);

SARVA EDUCATION (SITED) (Running- An I.T & Skill Advancement Training Programme) - 54 -

Visit us at: www.sarvaindia.com Licensed by Govt. of India ISO 9001:2008 Certified

Other Methods for Manipulating Strings

Here are several other String methods for manipulating strings:

Other Methods in the String Class for Manipulating Strings

Method Description

String[] split(String regex)
String[] split(String regex, int limit)

Searches for a match as specified by the string argument (which
contains a regular expression) and splits this string into an array of
strings accordingly. The optional integer argument specifies the
maximum size of the returned array. Regular expressions are
covered in the lesson titled "Regular Expressions."

CharSequence subSequence(int beginIndex, int endIndex) Returns a new character sequence constructed from beginIndex
index up until endIndex - 1.

String trim() Returns a copy of this string with leading and trailing white space
removed.

String toLowerCase()
String toUpperCase()

Returns a copy of this string converted to lowercase or uppercase.
If no conversions are necessary, these methods return the original
string.

Searching for Characters and Substrings in a String

Here are some other String methods for finding characters or substrings within a string. The String class provides accessor methods that return the
position within the string of a specific character or substring: indexOf() and lastIndexOf(). The indexOf() methods search forward from the
beginning of the string, and the lastIndexOf() methods search backward from the end of the string. If a character or substring is not found,
indexOf() and lastIndexOf() return -1.

The String class also provides a search method, contains, that returns true if the string contains a particular character sequence. Use this method
when you only need to know that the string contains a character sequence, but the precise location isn't important.

The following table describes the various string search methods.

The Search Methods in the String Class

Method Description

int indexOf(int ch)
int lastIndexOf(int ch)

Returns the index of the first (last) occurrence of the specified
character.

int indexOf(int ch, int fromIndex)
int lastIndexOf(int ch, int fromIndex)

Returns the index of the first (last) occurrence of the specified
character, searching forward (backward) from the specified index.

int indexOf(String str)
int lastIndexOf(String str)

Returns the index of the first (last) occurrence of the specified
substring.

int indexOf(String str, int fromIndex)
int lastIndexOf(String str, int fromIndex)

Returns the index of the first (last) occurrence of the specified
substring, searching forward (backward) from the specified index.

SARVA EDUCATION (SITED) (Running- An I.T & Skill Advancement Training Programme) - 55 -

Visit us at: www.sarvaindia.com Licensed by Govt. of India ISO 9001:2008 Certified

boolean contains(CharSequence s) Returns true if the string contains the specified character sequence.

Note: CharSequence is an interface that is implemented by the String class. Therefore, you can use a string as an argument for the contains()
method.

Replacing Characters and Substrings into a String

The String class has very few methods for inserting characters or substrings into a string. In general, they are not needed: You can create a new
string by concatenation of substrings you have removed from a string with the substring that you want to insert.

The String class does have four methods for replacing found characters or substrings, however. They are:

Methods in the String Class for Manipulating Strings

Method Description

String replace(char oldChar, char newChar) Returns a new string resulting from replacing all occurrences of
oldChar in this string with newChar.

String replace(CharSequence target, CharSequence replacement) Replaces each substring of this string that matches the literal target
sequence with the specified literal replacement sequence.

String replaceAll(String regex, String replacement) Replaces each substring of this string that matches the given regular
expression with the given replacement.

String replaceFirst(String regex, String replacement) Replaces the first substring of this string that matches the given
regular expression with the given replacement.

SARVA EDUCATION (SITED) (Running- An I.T & Skill Advancement Training Programme) - 56 -

Visit us at: www.sarvaindia.com Licensed by Govt. of India ISO 9001:2008 Certified

public class FilenameDemo {
 public static void main(String[] args) {
 final String FPATH = "/home/mem/index.html";
 Filename myHomePage = new Filename(FPATH,
 '/', '.');
 System.out.println("Extension = " +
 myHomePage.extension());
 System.out.println("Filename = " +
 myHomePage.filename());
 System.out.println("Path = " +
 myHomePage.path());
 }
}

And here's the output from the program:

Extension = html
Filename = index
Path = /home/mem

As shown in the following figure, our extension method uses
lastIndexOf to locate the last occurrence of the period (.) in the file
name. Then substring uses the return value of lastIndexOf to extract
the file name extension — that is, the substring from the period to the
end of the string. This code assumes that the file name has a period in
it; if the file name does not have a period, lastIndexOf returns -1, and
the substring method throws a StringIndexOutOfBoundsException.

Also, notice that the extension method uses dot + 1 as the argument to
substring. If the period character (.) is the last character of the string,
dot + 1 is equal to the length of the string, which is one larger than the
largest index into the string (because indices start at 0). This is a legal
argument to substring because that method accepts an index equal to,
but not greater than, the length of the string and interprets it to mean
"the end of the string."

Comparing Strings and Portions of Strings

The String class has a number of methods for comparing strings and portions of strings. The following table lists these methods.

Methods for Comparing Strings

Method Description

boolean endsWith(String suffix)

boolean startsWith(String prefix)

Returns true if this string ends with or begins with the substring
specified as an argument to the method.

boolean startsWith(String prefix, int offset) Considers the string beginning at the index offset, and returns true if
it begins with the substring specified as an argument.

int compareTo(String anotherString) Compares two strings lexicographically. Returns an integer

An Example

The following class, Filename, illustrates the use of lastIndexOf()
and substring() to isolate different parts of a file name.

Note: The methods in the following Filename class don't do any
error checking and assume that their argument contains a full
directory path and a filename with an extension. If these methods
were production code, they would verify that their arguments were
properly constructed.

public class Filename {
 private String fullPath;
 private char pathSeparator, extensionSeparator;

 public Filename(String str, char sep, char ext) {
 fullPath = str;
 pathSeparator = sep;
 extensionSeparator = ext;
 }

 public String extension() {
 int dot = fullPath.lastIndexOf(extensionSeparator);
 return fullPath.substring(dot + 1);
 }

 public String filename() { // gets filename without extension
 int dot = fullPath.lastIndexOf(extensionSeparator);
 int sep = fullPath.lastIndexOf(pathSeparator);
 return fullPath.substring(sep + 1, dot);
 }

 public String path() {
 int sep = fullPath.lastIndexOf(pathSeparator);
 return fullPath.substring(0, sep);
 }
}

Here is a program, FilenameDemo, that constructs a Filename
object and calls all of its methods:

SARVA EDUCATION (SITED) (Running- An I.T & Skill Advancement Training Programme) - 57 -

Visit us at: www.sarvaindia.com Licensed by Govt. of India ISO 9001:2008 Certified

indicating whether this string is greater than (result is > 0), equal to
(result is = 0), or less than (result is < 0) the argument.

int compareToIgnoreCase(String str)

Compares two strings lexicographically, ignoring differences in
case. Returns an integer indicating whether this string is greater than
(result is > 0), equal to (result is = 0), or less than (result is < 0) the
argument.

boolean equals(Object anObject) Returns true if and only if the argument is a String object that
represents the same sequence of characters as this object.

boolean equalsIgnoreCase(String anotherString)
Returns true if and only if the argument is a String object that
represents the same sequence of characters as this object, ignoring
differences in case.

boolean regionMatches(int toffset, String other, int ooffset, int len)

Tests whether the specified region of this string matches the
specified region of the String argument.

Region is of length len and begins at the index toffset for this string
and ooffset for the other string.

boolean regionMatches(boolean ignoreCase, int toffset, String
other, int ooffset, int len)

Tests whether the specified region of this string matches the
specified region of the String argument.

Region is of length len and begins at the index toffset for this string
and ooffset for the other string.

The boolean argument indicates whether case should be ignored; if
true, case is ignored when comparing characters.

boolean matches(String regex)
Tests whether this string matches the specified regular expression.
Regular expressions are discussed in the lesson titled "Regular
Expressions."

The following program, RegionMatchesDemo, uses the regionMatches method to search for a string within another string:

 public class RegionMatchesDemo {
 public static void main(String[] args) {
 String searchMe = "Green Eggs and Ham";
 String findMe = "Eggs";
 int searchMeLength = searchMe.length();
 int findMeLength = findMe.length();
 boolean foundIt = false;
 for (int i = 0; i <= (searchMeLength - findMeLength); i++) {
 if (searchMe.regionMatches(i, findMe, 0, findMeLength)) {
 foundIt = true;
 System.out.println(searchMe.substring(i, i + findMeLength));
 break;
 }
 }
 if (!foundIt) System.out.println("No match found.");
 }
 }

The output from this program is Eggs.

The program steps through the string referred to by searchMe one character at a time. For each character, the program calls the regionMatches
method to determine whether the substring beginning with the current character matches the string the program is looking for.

SARVA EDUCATION (SITED) (Running- An I.T & Skill Advancement Training Programme) - 58 -

Visit us at: www.sarvaindia.com Licensed by Govt. of India ISO 9001:2008 Certified

The StringBuilder Class

StringBuilder objects are like String objects, except that they can be modified. Internally, these objects are treated like variable-length arrays that
contain a sequence of characters. At any point, the length and content of the sequence can be changed through method invocations. Strings should
always be used unless string builders offer an advantage in terms of simpler code (see the sample program at the end of this section) or better
performance. For example, if you need to concatenate a large number of strings, appending to a StringBuilder object is more efficient.

Length and Capacity

The StringBuilder class, like the String class, has a length() method that returns the length of the character sequence in the builder.
Unlike strings, every string builder also has a capacity, the number of character spaces that have been allocated. The capacity, which is returned by
the capacity() method, is always greater than or equal to the length (usually greater than) and will automatically expand as necessary to
accommodate additions to the string builder.

StringBuilder Constructors

Constructor Description

StringBuilder() Creates an empty string builder with a capacity of 16 (16 empty elements).

StringBuilder(CharSequence cs) Constructs a string builder containing the same characters as the specified
CharSequence, plus an extra 16 empty elements trailing the CharSequence.

StringBuilder(int initCapacity) Creates an empty string builder with the specified initial capacity.

StringBuilder(String s) Creates a string builder whose value is initialized by the specified string,
plus an extra 16 empty elements trailing the string.

For example, the following code

StringBuilder sb = new StringBuilder(); // creates empty builder, capacity 16
sb.append("Greetings"); // adds 9 character string at beginning
will produce a string builder with a length of 9 and a capacity of 16:

The StringBuilder class has some methods related to length and capacity that the String class does not have:

Length and Capacity Methods

Method Description

void setLength(int newLength)
Sets the length of the character sequence. If newLength is less than length(), the last
characters in the character sequence are truncated. If newLength is greater than
length(), null characters are added at the end of the character sequence.

void ensureCapacity(int
minCapacity) Ensures that the capacity is at least equal to the specified minimum.

A number of operations (for example, append(), insert(), or setLength()) can increase the length of the character sequence in the string builder so
that the resultant length() would be greater than the current capacity(). When this happens, the capacity is automatically increased.

SARVA EDUCATION (SITED) (Running- An I.T & Skill Advancement Training Programme) - 59 -

Visit us at: www.sarvaindia.com Licensed by Govt. of India ISO 9001:2008 Certified

StringBuilder Operations

The principal operations on a StringBuilder that are not available in String are the append() and insert() methods, which are overloaded so as to
accept data of any type. Each converts its argument to a string and then appends or inserts the characters of that string to the character sequence in
the string builder. The append method always adds these characters at the end of the existing character sequence, while the insert method adds the
characters at a specified point. Here are a number of the methods of the StringBuilder class.

Various StringBuilder Methods

Method Description

StringBuilder append(boolean b)
StringBuilder append(char c)
StringBuilder append(char[] str)
StringBuilder append(char[] str, int offset, int len)
StringBuilder append(double d)
StringBuilder append(float f)
StringBuilder append(int i)
StringBuilder append(long lng)
StringBuilder append(Object obj)
StringBuilder append(String s)

Appends the argument to this string builder. The data is converted to a
string before the append operation takes place.

StringBuilder delete(int start, int end)
StringBuilder deleteCharAt(int index) Deletes the specified character(s) in this string builder.

StringBuilder insert(int offset, boolean b)
StringBuilder insert(int offset, char c)
StringBuilder insert(int offset, char[] str)
StringBuilder insert(int index, char[] str, int offset, int len)
StringBuilder insert(int offset, double d)
StringBuilder insert(int offset, float f)
StringBuilder insert(int offset, int i)
StringBuilder insert(int offset, long lng)
StringBuilder insert(int offset, Object obj)
StringBuilder insert(int offset, String s)

Inserts the second argument into the string builder. The first integer
argument indicates the index before which the data is to be inserted. The
data is converted to a string before the insert operation takes place.

StringBuilder replace(int start, int end, String s)
void setCharAt(int index, char c) Replaces the specified character(s) in this string builder.

StringBuilder reverse() Reverses the sequence of characters in this string builder.

String toString() Returns a string that contains the character sequence in the builder.

Note: You can use any String method on a StringBuilder object by first converting the string builder to a string with the toString() method of the
StringBuilder class. Then convert the string back into a string builder using the StringBuilder(String str) constructor.

SARVA EDUCATION (SITED) (Running- An I.T & Skill Advancement Training Programme) - 60 -

Visit us at: www.sarvaindia.com Licensed by Govt. of India ISO 9001:2008 Certified

Note that println() prints a string builder, as in:
System.out.println(sb);
because sb.toString() is called implicitly, as it is with any other object
in a println() invocation.

Note: There is also a StringBuffer class that is exactly the same as the
StringBuilder class, except that it is thread-safe by virtue of having its
methods synchronized. Threads will be discussed in the lesson on
concurrency.

Short note on Characters and Strings

Most of the time, if you are using a single character value, you will use
the primitive char type. There are times, however, when you need to
use a char as an object—for example, as a method argument where an
object is expected. The Java programming language provides a
wrapper class that "wraps" the char in a Character object for this
purpose. An object of type Character contains a single field whose
type is char. This Character class also offers a number of useful class
(i.e., static) methods for manipulating characters.

Strings are a sequence of characters and are widely used in Java
programming. In the Java programming language, strings are objects.
The String class has over 60 methods and 13 constructors.

Most commonly, you create a string with a statement like

String s = "Hello world!";
rather than using one of the String constructors.

The String class has many methods to find and retrieve substrings;
these can then be easily reassembled into new strings using the +
concatenation operator.

The String class also includes a number of utility methods, among
them split(), toLowerCase(), toUpperCase(), and valueOf(). The latter
method is indispensable in converting user input strings to numbers.
The Number subclasses also have methods for converting strings to
numbers and vice versa.

In addition to the String class, there is also a StringBuilder class.
Working with StringBuilder objects can sometimes be more efficient
than working with strings. The StringBuilder class offers a few
methods that can be useful for strings, among them reverse(). In
general, however, the String class has a wider variety of methods.

A string can be converted to a string builder using a StringBuilder
constructor. A string builder can be converted to a string with the
toString() method.

An Example

The StringDemo program that was listed in the section titled
"Strings" is an example of a program that would be more efficient if
a StringBuilder were used instead of a String.

StringDemo reversed a palindrome. Here, once again, is its listing:

public class StringDemo {
 public static void main(String[] args) {
 String palindrome = "Dot saw I was Tod";
 int len = palindrome.length();
 char[] tempCharArray = new char[len];
 char[] charArray = new char[len];

 // put original string in an array of chars
 for (int i = 0; i < len; i++) {
 tempCharArray[i] = palindrome.charAt(i);
 }

 // reverse array of chars
 for (int j = 0; j < len; j++) {
 charArray[j] = tempCharArray[len - 1 - j];
 }

 String reversePalindrome = new String(charArray);
 System.out.println(reversePalindrome);
 }
}

Running the program produces this output:

doT saw I was toD

To accomplish the string reversal, the program converts the string to
an array of characters (first for loop), reverses the array into a second
array (second for loop), and then converts back to a string.

If you convert the palindrome string to a string builder, you can use
the reverse() method in the StringBuilder class. It makes the code
simpler and easier to read:

public class StringBuilderDemo {
 public static void main(String[] args) {
 String palindrome = "Dot saw I was Tod";

 StringBuilder sb = new StringBuilder(palindrome);

 sb.reverse(); // reverse it

 System.out.println(sb);
 }
}

Running this program produces the same output:
doT saw I was toD

SARVA EDUCATION (SITED) (Running- An I.T & Skill Advancement Training Programme) - 61 -

Visit us at: www.sarvaindia.com Licensed by Govt. of India ISO 9001:2008 Certified

CHAPTER - 10

GENERICS

The BoxDemo1 program creates an Integer object, passes it to add,
then assigns that same object to someInteger by the return value of get.
It then prints the object's value (10) to standard output. We know that
the cast from Object to Integer is correct because we've honored the
"contract" specified in the comment. But remember, the compiler
knows nothing about this — it just trusts that our cast is correct.
Furthermore, it will do nothing to prevent a careless programmer from
passing in an object of the wrong type, such as String:

public class BoxDemo2 {

 public static void main(String[] args) {

 // ONLY place Integer objects into this box!
 Box integerBox = new Box();

 // Imagine this is one part of a large application
 // modified by one programmer.
 integerBox.add("10"); // note how the type is now String

 // ... and this is another, perhaps written
 // by a different programmer
 Integer someInteger = (Integer)integerBox.get();
 System.out.println(someInteger);
 }
}

In BoxDemo2 we've stored the number 10 as a String, which could be
the case when, say, a GUI collects input from the user. However, the
existing cast from Object to Integer has mistakenly been overlooked.
This is clearly a bug, but because the code still compiles, you wouldn't
know anything is wrong until runtime, when the application crashes
with a ClassCastException:

Exception in thread "main"
 java.lang.ClassCastException:
 java.lang.String cannot be cast to java.lang.Integer
 at BoxDemo2.main(BoxDemo2.java:6)

If the Box class had been designed with generics in mind, this mistake
would have been caught by the compiler, instead of crashing the
application at runtime.

Generic Types

Let's update our Box class to use generics. We'll first create a generic
type declaration by changing the code "public class Box" to "public
class Box<T>"; this introduces one type variable, named T, that can be
used anywhere inside the class. This same technique can be applied to
interfaces as well. There's nothing particularly complex about this
concept. In fact, it's quite similar to what you already know about
variables in general. Just think of T as a special kind of variable,

whose "value" will be whatever type you pass in; this can be any class
type, any interface type, or even another type variable. It just can't be
any of the primitive data types. In this context, we also say that T is a
formal type parameter of the Box class.

INTRODUCTION

In any nontrivial software project, bugs are simply a fact of life.
Careful planning, programming, and testing can help reduce their
pervasiveness, but somehow, somewhere, they'll always find a way
to creep into your code. This becomes especially apparent as new
features are introduced and your code base grows in size and
complexity. Fortunately, some bugs are easier to detect than others.
Compile-time bugs, for example, tell you immediately that
something is wrong; you can use the compiler's error messages to
figure out what the problem is and fix it, right then and there.
Runtime bugs, however, can be much more problematic; they don't
always surface immediately, and when they do, it may be at a point
in time that's far removed from the actual cause of the problem.
Generics add stability to your code by making more of your bugs
detectable at compile time. Some programmers choose to learn
generics by studying the Java Collections Framework; after all,
generics are heavily used by those classes. However, since we
haven't yet covered collections, this chapter will focus primarily on
simple "collections-like" examples that we'll design from scratch.
This hands-on approach will teach you the necessary syntax and
terminology while demonstrating the various kinds of problems that
generics were designed to solve.

A Simple Box Class

Let's begin by designing a nongeneric Box class that operates on
objects of any type. It need only provide two methods: add, which
adds an object to the box, and get, which retrieves it:

 public class Box {

 private Object object;

 public void add(Object object) {
 this.object = object;
 }

 public Object get() {
 return object;
 }
 }

Since its methods accept or return Object, you're free to pass in
whatever you want, provided that it's not one of the primitive types.
However, should you need to restrict the contained type to something
specific (like Integer), your only option would be to specify the
requirement in documentation (or in this case, a comment), which of
course the compiler knows nothing about:

public class BoxDemo1 {

 public static void main(String[] args) {

 // ONLY place Integer objects into this box!
 Box integerBox = new Box();
 integerBox.add(new Integer(10));
 Integer someInteger = (Integer)integerBox.get();
 System.out.println(someInteger);
 }
}

SARVA EDUCATION (SITED) (Running- An I.T & Skill Advancement Training Programme) - 62 -

Visit us at: www.sarvaindia.com Licensed by Govt. of India ISO 9001:2008 Certified

Furthermore, if you try adding an incompatible type to the box, such as
String, compilation will fail, alerting you to what previously would
have been a runtime bug:

BoxDemo3.java:5: add(java.lang.Integer) in
Box<java.lang.Integer>

 cannot be applied to (java.lang.String)
 integerBox.add("10");
 ̂
 1 error

It's important to understand that type variables are not actually types
themselves. In the above examples, you won't find T.java or T.class
anywhere on the filesystem. Furthermore, T is not a part of the Box
class name. In fact during compilation, all generic information will be
removed entirely, leaving only Box.class on the filesystem.

Also note that a generic type may have multiple type parameters, but
each parameter must be unique within its declaring class or interface.
A declaration of Box<T,T>, for example, would generate an error on
the second occurrence of T, but Box<T,U>, however, would be
allowed.

Type Parameter Naming Conventions

By convention, type parameter names are single, uppercase letters.
This stands in sharp contrast to the variable naming conventions that
you already know about, and with good reason: Without this
convention, it would be difficult to tell the difference between a type
variable and an ordinary class or interface name.
The most commonly used type parameter names are:

 E - Element (used extensively by the Java Collections
Framework)

 K - Key
 N - Number
 T - Type
 V - Value
 S,U,V etc. - 2nd, 3rd, 4th types

Generic Methods and Constructors

Type parameters can also be declared within method and constructor
signatures to create generic methods and generic constructors. This is
similar to declaring a generic type, but the type parameter's scope is
limited to the method or constructor in which it's declared.

/**
 * This version introduces a generic method.
 */
public class Box<T> {

 private T t;

 public void add(T t) {
 this.t = t;
 }

 public T get() {
 return t;
 }

/**
 * Generic version of the Box class.
 */
public class Box<T> {

 private T t; // T stands for "Type"

 public void add(T t) {
 this.t = t;
 }

 public T get() {
 return t;
 }
}

As you can see, we've replaced all occurrences of Object with T. To
reference this generic class from within your own code, you must
perform a generic type invocation, which replaces T with some
concrete value, such as Integer:

Box<Integer> integerBox;

You can think of a generic type invocation as being similar to an
ordinary method invocation, but instead of passing an argument to a
method, you're passing a type argument — Integer in this case — to
the Box class itself.

Like any other variable declaration, this code does not actually create
a new Box object.

It simply declares that integerBox will hold a reference to a "Box of
Integer", which is how Box<Integer> is read.

An invocation of a generic type is generally known as a
parameterized type.

To instantiate this class, use the new keyword, as usual, but place
<Integer> between the class name and the parenthesis:

integerBox = new Box<Integer>();

Or, you can put the entire statement on one line, such as:

Box<Integer> integerBox = new Box<Integer>();

Once integerBox is initialized, you're free to invoke its get method
without providing a cast, as in BoxDemo3:

public class BoxDemo3 {

 public static void main(String[] args) {
 Box<Integer> integerBox = new Box<Integer>();
 integerBox.add(new Integer(10));
 Integer someInteger = integerBox.get(); // no cast!
 System.out.println(someInteger);
 }
}

SARVA EDUCATION (SITED) (Running- An I.T & Skill Advancement Training Programme) - 63 -

Visit us at: www.sarvaindia.com Licensed by Govt. of India ISO 9001:2008 Certified

 To declare a bounded type parameter, list the type parameter's
name, followed by the extends keyword, followed by its upper bound,
which in this example is Number. Note that, in this context, extends is
used in a general sense to mean either "extends" (as in classes) or
"implements" (as in interfaces).

/**
 * This version introduces a bounded type parameter.
 */
public class Box<T> {

 private T t;

 public void add(T t) {
 this.t = t;
 }

 public T get() {
 return t;
 }

 public <U extends Number> void inspect(U u){
 System.out.println("T: " + t.getClass().getName());
 System.out.println("U: " + u.getClass().getName());
 }

 public static void main(String[] args) {
 Box<Integer> integerBox = new Box<Integer>();
 integerBox.add(new Integer(10));
 integerBox.inspect("some text"); // error: this is still String!
 }
}

By modifying our generic method to include this bounded type
parameter, compilation will now fail, since our invocation of inspect
still includes a String:

Box.java:21: <U>inspect(U) in Box<java.lang.Integer> cannot
 be applied to (java.lang.String)
 integerBox.inspect("10");
 ̂
1 error

To specify additional interfaces that must be implemented, use the &
character, as in:

<U extends Number & MyInterface>

Subtyping

As you already know, it's possible to assign an object of one type to an
object of another type provided that the types are compatible. For
example, you can assign an Integer to an Object, since Object is one of
Integer's supertypes:

 Object someObject = new Object();
 Integer someInteger = new Integer(10);
 someObject = someInteger; // OK

In object-oriented terminology, this is called an "is a" relationship.
Since an Integer is a kind of Object, the assignment is allowed. But
Integer is also a kind of Number, so the following code is valid as Well:

public <U> void inspect(U u){
 System.out.println("T: " + t.getClass().getName());
 System.out.println("U: " + u.getClass().getName());
 }

 public static void main(String[] args) {
 Box<Integer> integerBox = new Box<Integer>();
 integerBox.add(new Integer(10));
 integerBox.inspect("some text");
 }
}

Here we've added one generic method, named inspect, that defines
one type parameter, named U. This method accepts an object and
prints its type to standard output. For comparison, it also prints out
the type of T. For convenience, this class now also has a main
method so that it can be run as an application.

The output from this program is:

T: java.lang.Integer
U: java.lang.String

By passing in different types, the output will change accordingly.

A more realistic use of generic methods might be something like the
following, which defines a static method that stuffs references to a
single item into multiple boxes:

 public static <U> void fillBoxes(U u, List<Box<U>> boxes) {
 for (Box<U> box : boxes) {
 box.add(u);
 }
 }

To use this method, your code would look something like the
following:

 Crayon red = ...;
 List<Box<Crayon>> crayonBoxes = ...;

The complete syntax for invoking this method is:

Box.<Crayon>fillBoxes(red, crayonBoxes);

Here we've explicitly provided the type to be used as U, but more
often than not, this can be left out and the compiler will infer the type
that's needed:

Box.fillBoxes(red, crayonBoxes); // compiler infers that U is Crayon

This feature, known as type inference, allows you to invoke a generic
method as you would an ordinary method, without specifying a type
between angle brackets.

Bounded Type Parameters

There may be times when you'll want to restrict the kinds of types
that are allowed to be passed to a type parameter. For example, a
method that operates on numbers might only want to accept instances
of Number or its subclasses. This is what bounded type parameters
are for.

SARVA EDUCATION (SITED) (Running- An I.T & Skill Advancement Training Programme) - 64 -

Visit us at: www.sarvaindia.com Licensed by Govt. of India ISO 9001:2008 Certified

 and a butterfly into a butterfly cage:

 interface Butterfly extends Animal {}
 Butterfly monarch = ...;
 Cage<Butterfly> butterflyCage = ...;
 butterflyCage.add(monarch);

But what about an "animal cage"? English is ambiguous, so to be
precise let's assume we're talking about an "all-animal cage":

 Cage<Animal> animalCage = ...;

This is a cage designed to hold all kinds of animals, mixed together. It
must have bars strong enough to hold in the lions, and spaced closely
enough to hold in the butterflies. Such a cage might not even be
feasible to build, but if it is, then:

 animalCage.add(king);
 animalCage.add(monarch);

Since a lion is a kind of animal (Lion is a subtype of Animal), the
question then becomes, "Is a lion cage a kind of animal cage? Is
Cage<Lion> a subtype of Cage<Animal>?". By the above definition of
animal cage, the answer must be "no". This is surprising! But it makes
perfect sense when you think about it: A lion cage cannot be assumed
to keep in butterflies, and a butterfly cage cannot be assumed to hold
in lions. Therefore, neither cage can be considered an "all-animal"
cage:

 animalCage = lionCage; // compile-time error

 animalCage = butterflyCage; // compile-time error

Without generics, the animals could be placed into the wrong kinds of
cages, where it would be possible for them to escape.

Wildcards

Earlier we mentioned that English is ambiguous. The phrase "animal
cage" can reasonably mean "all-animal cage", but it also suggests an
entirely different concept: a cage designed not for any kind of animal,
but rather for some kind of animal whose type is unknown. In generics,
an unknown type is represented by the wildcard character "?".

To specify a cage capable of holding some kind of animal:

 Cage<? extends Animal> someCage = ...;

Read "? extends Animal" as "an unknown type that is a subtype of
Animal, possibly Animal itself", which boils down to "some kind of
animal". This is an example of a bounded wildcard, where Animal
forms the upper bound of the expected type. If you're asked for a cage
that simply holds some kind of animal, you're free to provide a lion
cage or a butterfly cage.
Note: It's also possible to specify a lower bound by using the super
keyword instead of extends. The code <? super Animal>, therefore,
would be read as "an unknown type that is a supertype of Animal,
possibly Animal itself". You can also specify an unknown type with an
unbounded wilcard, which simply looks like <?>. An unbounded
wildcard is essentially the same as saying <? extends Object>.

public void someMethod(Number n){
 // method body omitted
 }

 someMethod(new Integer(10)); // OK
 someMethod(new Double(10.1)); // OK

The same is also true with generics. You can perform a generic type
invocation, passing Number as its type argument and any subsequent
invocation of add will be allowed if the argument is compatible with
Number:

 Box<Number> box = new Box<Number>();
 box.add(new Integer(10)); // OK
 box.add(new Double(10.1)); // OK

Now consider the following method:

 public void boxTest(Box<Number> n){
 // method body omitted
 }

What type of argument does it accept? By looking at its signature, we
can see that it accepts a single argument whose type is
Box<Number>. But what exactly does that mean? Are you allowed
to pass in Box<Integer> or Box<Double>, as you might expect?
Surprisingly, the answer is "no", because Box<Integer> and
Box<Double> are not subtypes of Box<Number>.

Understanding why becomes much easier if you think of tangible
objects — things you can actually picture — such as a cage:

 // A cage is a collection of things, with bars to keep
them in.
 interface Cage<E> extends Collection<E>;

Note: The Collection interface is the root interface of the collection
hierarchy; it represents a group of objects. Since a cage would be
used for holding a collection of objects (the animals), it makes sense
to include it in this example.

A lion is a kind of animal, so Lion would be a subtype of Animal:

 interface Lion extends Animal {}
 Lion king = ...;

Where we need some animal, we're free to provide a lion:

 Animal a = king;

A lion can of course be put into a lion cage:

 Cage<Lion> lionCage = ...;
 lionCage.add(king);

SARVA EDUCATION (SITED) (Running- An I.T & Skill Advancement Training Programme) - 65 -

Visit us at: www.sarvaindia.com Licensed by Govt. of India ISO 9001:2008 Certified

 For instance, Box<String> is translated to type Box, which is called
the raw type — a raw type is a generic class or interface name without
any type arguments. This means that you can't find out what type of
Object a generic class is using at runtime. The following operations are
not possible:

public class MyClass<E> {
 public static void myMethod(Object item) {
 if (item instanceof E) { //Compiler error
 ...
 }
 E item2 = new E(); //Compiler error
 E[] iArray = new E[10]; //Compiler error
 E obj = (E)new Object(); //Unchecked cast warning
 }
}

The operations shown in bold are meaningless at runtime because the
compiler removes all information about the actual type argument
(represented by the type parameter E) at compile time.

Type erasure exists so that new code may continue to interface with
legacy code. Using a raw type for any other reason is considered bad
programming practice and should be avoided whenever possible.

When mixing legacy code with generic code, you may encounter
warning messages similar to the following:

Note: WarningDemo.java uses unchecked or unsafe operations.
Note: Recompile with -Xlint:unchecked for details.

This can happen when using an older API that operates on raw types,
as shown in the following WarningDemo program:

public class WarningDemo {
 public static void main(String[] args){
 Box<Integer> bi;
 bi = createBox();
 }

 static Box createBox(){
 return new Box();
 }
}

Recompiling with -Xlint:unchecked reveals the following additional
information:

WarningDemo.java:4: warning: [unchecked] unchecked conversion
found : Box
required: Box<java.lang.Integer>
 bi = createBox();
 ̂
1 warning

__

While Cage<Lion> and Cage<Butterfly> are not subtypes of
Cage<Animal>, they are in fact subtypes of Cage<? extends
Animal>:

 someCage = lionCage; // OK
 someCage = butterflyCage; // OK

So now the question becomes, "Can you add butterflies and lions
directly to someCage?". As you can probably guess, the answer to
this question is "no".

someCage.add(king); // compiler-time error
someCage.add(monarch); // compiler-time error

If someCage is a butterfly cage, it would hold butterflies just fine,
but the lions would be able to break free. If it's a lion cage, then all
would be well with the lions, but the butterflies would fly away. So if
you can't put anything at all into someCage, is it useless? No,
because you can still read its contents:

 void feedAnimals(Cage<? extends Animal> someCage) {
 for (Animal a : someCage)
 a.feedMe();
 }

Therefore, you could house your animals in their individual cages, as
shown earlier, and invoke this method first for the lions and then for
the butterflies:

 feedAnimals(lionCage);
 feedAnimals(butterflyCage);

Or, you could choose to combine your animals in the all-animal cage
instead:

feedAnimals(animalCage);

Type Erasure

When a generic type is instantiated, the compiler translates those
types by a technique called type erasure — a process where the
compiler removes all information related to type parameters and type
arguments within a class or method.

Type erasure enables Java applications that use generics to maintain
binary compatibility with Java libraries and applications that were
created before generics.

SARVA EDUCATION (SITED) (Running- An I.T & Skill Advancement Training Programme) - 66 -

Visit us at: www.sarvaindia.com Licensed by Govt. of India ISO 9001:2008 Certified

CHAPTER - 11

PACKAGES

You should bundle these classes and the interface in a package for
several reasons, including the following:

 You and other programmers can easily determine that these types
are related.

 You and other programmers know where to find types that can
provide graphics-related functions.

 The names of your types won't conflict with the type names in
other packages because the package creates a new namespace.

 You can allow types within the package to have unrestricted
access to one another yet still restrict access for types outside the
package.

Creating a Package

To create a package, you choose a name for the package (naming
conventions are discussed in the next section) and put a package
statement with that name at the top of every source file that contains
the types (classes, interfaces, enumerations, and annotation types)
that you want to include in the package.
The package statement (for example, package graphics;) must be the
first line in the source file. There can be only one package statement
in each source file, and it applies to all types in the file.
Note: If you put multiple types in a single source file, only one can
be public, and it must have the same name as the source file. For
example, you can define public class Circle in the file Circle.java,
define public interface Draggable in the file Draggable.java, define
public enum Day in the file Day.java, and so forth.
You can include non-public types in the same file as a public type
(this is strongly discouraged, unless the non-public types are small
and closely related to the public type), but only the public type will
be accessible from outside of the package. All the top-level, non-
public types will be package private.
If you put the graphics interface and classes listed in the preceding
section in a package called graphics, you would need six source
files, like this:

//in the Draggable.java file
package graphics;
public interface Draggable {
 . . .
}

//in the Graphic.java file
package graphics;
public abstract class Graphic {
 . . .
}

//in the Circle.java file
package graphics;
public class Circle extends Graphic implements Draggable {
 . . .
}

//in the Rectangle.java file
package graphics;

public class Rectangle extends Graphic implements Draggable {

This Chapter explains how to bundle classes and interfaces into
packages, how to use classes that are in packages, and how to arrange
your file system so that the compiler can find your source files.

Creating and Using Packages

To make types easier to find and use, to avoid naming conflicts, and to
control access, programmers bundle groups of related types into
packages.

Definition of packages

A package is a grouping of related types providing access protection
and name space management. Note that types refers to classes,
interfaces, enumerations, and annotation types. Enumerations and
annotation types are special kinds of classes and interfaces,
respectively, so types are often referred to in this lesson simply as
classes and interfaces.

The types that are part of the Java platform are members of various
packages that bundle classes by function: fundamental classes are in
java.lang, classes for reading and writing (input and output) are in
java.io, and so on. You can put your types in packages too.

Suppose you write a group of classes that represent graphic objects,
such as circles, rectangles, lines, and points. You also write an
interface, Draggable, that classes implement if they can be dragged with
the mouse.

//in the Draggable.java file
public interface Draggable {
 . . .
}

//in the Graphic.java file
public abstract class Graphic {
 . . .
}

//in the Circle.java file
public class Circle extends Graphic implements Draggable {
 . . .
}

//in the Rectangle.java file
public class Rectangle extends Graphic implements Draggable {
 . . .
}

//in the Point.java file
public class Point extends Graphic implements Draggable {
 . . .
}

//in the Line.java file
public class Line extends Graphic implements Draggable {
 . . .
}

SARVA EDUCATION (SITED) (Running- An I.T & Skill Advancement Training Programme) - 67 -

Visit us at: www.sarvaindia.com Licensed by Govt. of India ISO 9001:2008 Certified

In some cases, the internet domain name may not be a valid package
name. This can occur if the domain name contains a hyphen or other
special character, if the package name begins with a digit or other
character that is illegal to use as the beginning of a Java name, or if the
package name contains a reserved Java keyword, such as "int". In this
event, the suggested convention is to add an underscore. For example:

Legalizing Package Names
Domain Name Package Name Prefix

clipart-open.org org.clipart_open

free.fonts.int int_.fonts.free
poetry.7days.com com._7days.poetry

Using Package Members

The types that comprise a package are known as the package members.

To use a public package member from outside its package, you must
do one of the following:

 Refer to the member by its fully qualified name
 Import the package member
 Import the member's entire package

Each is appropriate for different situations, as explained in the sections
that follow.

Referring to a Package Member by Its Qualified Name

So far, most of the examples in this tutorial have referred to types by
their simple names, such as Rectangle and StackOfInts. You can use a
package member's simple name if the code you are writing is in the
same package as that member or if that member has been imported.

However, if you are trying to use a member from a different package
and that package has not been imported, you must use the member's
fully qualified name, which includes the package name. Here is the
fully qualified name for the Rectangle class declared in the graphics
package in the previous example.

 graphics.Rectangle

You could use this qualified name to create an instance of
graphics.Rectangle:

 graphics.Rectangle myRect = new graphics.Rectangle();

Qualified names are all right for infrequent use. When a name is used
repetitively, however, typing the name repeatedly becomes tedious and
the code becomes difficult to read. As an alternative, you can import
the member or its package and then use its simple name.

Importing a Package Member

 . . .
}

//in the Point.java file
package graphics;
public class Point extends Graphic implements Draggable {
 . . .
}

//in the Line.java file
package graphics;
public class Line extends Graphic implements Draggable {
 . . .
}

If you do not use a package statement, your type ends up in an
unnamed package. Generally speaking, an unnamed package is only
for small

or

temporary applications or when you are just beginning the
development process. Otherwise, classes and interfaces belong in
named packages.

Naming a Package

With programmers worldwide writing classes and interfaces using
the Java programming language, it is likely that many programmers
will use the same name for different types.

In fact, the previous example does just that: It defines a Rectangle
class when there is already a Rectangle class in the java.awt package.
Still, the compiler allows both classes to have the same name if they
are in different packages.

The fully qualified name of each Rectangle class includes the
package name. That is, the fully qualified name of the Rectangle
class in the graphics package is graphics.Rectangle, and the fully
qualified name of the Rectangle class in the java.awt package is
java.awt.Rectangle.

This works well unless two independent programmers use the same
name for their packages. What prevents this problem? Convention.

Naming Conventions

Package names are written in all lowercase to avoid conflict with the
names of classes or interfaces.

Companies use their reversed Internet domain name to begin their
package names—for example, com.example.orion for a package
named orion created by a programmer at example.com.

Name collisions that occur within a single company need to be
handled by convention within that company, perhaps by including
the region or the project name after the company name (for example,
com.company.region.package).

Packages in the Java language itself begin with java. or javax.

SARVA EDUCATION (SITED) (Running- An I.T & Skill Advancement Training Programme) - 68 -

Visit us at: www.sarvaindia.com Licensed by Govt. of India ISO 9001:2008 Certified

Importing java.awt.* imports all of the types in the java.awt package,
but it does not import java.awt.color, java.awt.font, or any other
java.awt.xxxx packages. If you plan to use the classes and other types
in java.awt.color as well as those in java.awt, you must import both
packages with all their files:

import java.awt.*;
import java.awt.color.*;

Name Ambiguities

If a member in one package shares its name with a member in another
package and both packages are imported, you must refer to each
member by its qualified name. For example, the graphics package
defined a class named Rectangle. The java.awt package also contains a
Rectangle class. If both graphics and java.awt have been imported, the
following is ambiguous.

Rectangle rect;

In such a situation, you have to use the member's fully qualified name
to indicate exactly which Rectangle class you want. For example,

graphics.Rectangle rect;

The Static Import Statement

There are situations where you need frequent access to static final
fields (constants) and static methods from one or two classes.
Prefixing the name of these classes over and over can result in
cluttered code. The static import statement gives you a way to import
the constants and static methods that you want to use so that you do
not need to prefix the name of their class.

The java.lang.Math class defines the PI constant and many static
methods, including methods for calculating sines, cosines, tangents,
square roots, maxima, minima, exponents, and many more. For
example,

public static final double PI 3.141592653589793
public static double cos(double a)

Ordinarily, to use these objects from another class, you prefix the class
name, as follows.

double r = Math.cos(Math.PI * theta);

You can use the static import statement to import the static members
of java.lang.Math so that you don't need to prefix the class name,
Math. The static members of Math can be imported either individually:

import static java.lang.Math.PI;

or as a group:

import static java.lang.Math.*;

Once they have been imported, the static members can be used without
qualification. For example, the previous code snippet would become:

double r = cos(PI * theta);

To import a specific member into the current file, put an import
statement at the beginning of the file before any type definitions but
after the package statement, if there is one. Here's how you would
import the Rectangle class from the graphics package created in the
previous section.

 import graphics.Rectangle;

Now you can refer to the Rectangle class by its simple name.

 Rectangle myRectangle = new Rectangle();

This approach works well if you use just a few members from the
graphics package. But if you use many types from a package, you
should import the entire package.

Importing an Entire Package

To import all the types contained in a particular package, use the
import statement with the asterisk (*) wildcard character.

 import graphics.*;

Now you can refer to any class or interface in the graphics package
by its simple name.

Circle myCircle = new Circle();
Rectangle myRectangle = new Rectangle();

The asterisk in the import statement can be used only to specify all
the classes within a package, as shown here. It cannot be used to
match a subset of the classes in a package. For example, the
following does not match all the classes in the graphics package that
begin with A.

 import graphics.A*; //does not work

Instead, it generates a compiler error. With the import statement, you
generally import only a single package member or an entire package.

Note: Another, less common form of import allows you to import the
public nested classes of an enclosing class. For example, if the
graphics.Rectangle class contained useful nested classes, such as
Rectangle.DoubleWide and Rectangle.Square, you could import
Rectangle and its nested classes by using the following two
statements.

import graphics.Rectangle;
import graphics.Rectangle.*;

Be aware that the second import statement will not import Rectangle.

For convenience, the Java compiler automatically imports three
entire packages for each source file: (1) the package with no name,
(2) the java.lang package, and (3) the current package (the package
for the current file).

Apparent Hierarchies of Packages

At first, packages appear to be hierarchical, but they are not. For
example, the Java API includes a java.awt package, a java.awt.color
package, a java.awt.font package, and many others that begin with
java.awt. However, the java.awt.color package, the java.awt.font
package, and other java.awt.xxxx packages are not included in the
java.awt package. The prefix java.awt (the Java Abstract Window
Toolkit) is used for a number of related packages to make the
relationship evident, but not to show inclusion.

SARVA EDUCATION (SITED) (Running- An I.T & Skill Advancement Training Programme) - 69 -

Visit us at: www.sarvaindia.com Licensed by Govt. of India ISO 9001:2008 Certified

// in the Rectangle.java file
package com.example.graphics;
public class Rectangle{
 . . .
}

class Helper{
 . . .
}

then the compiled files will be located at:

<path to the parent directory of the output
files>\com\example\graphics\Rectangle.class
<path to the parent directory of the output
files>\com\example\graphics\Helper.class

Like the .java source files, the compiled .class files should be in a
series of directories that reflect the package name. However, the path
to the .class files does not have to be the same as the path to the .java
source files. You can arrange your source and class directories
separately, as:

<path_one>\sources\com\example\graphics\Rectangle.java

<path_two>\classes\com\example\graphics\Rectangle.class

By doing this, you can give the classes directory to other programmers
without revealing your sources. You also need to manage source and
class files in this manner so that the compiler and the Java Virtual
Machine (JVM) can find all the types your program uses.
The full path to the classes directory, <path_two>\classes, is called the
class path, and is set with the CLASSPATH system variable. Both the
compiler and the JVM construct the path to your .class files by adding
the package name to the class path. For example, if

<path_two>\classes
is your class path, and the package name is
com.example.graphics,
then the compiler and JVM look for .class files in
<path_two>\classes\com\example\graphics.

A class path may include several paths, separated by a semicolon
(Windows) or colon (Unix). By default, the compiler and the JVM
search the current directory and the JAR file containing the Java
platform classes so that these directories are automatically in your
class path.

Setting the CLASSPATH System Variable
To display the current CLASSPATH variable, use these commands in
Windows and Unix (Bourne shell):

In Windows: C:\> set CLASSPATH
In Unix: % echo $CLASSPATH
To delete the current contents of the CLASSPATH variable, use these
commands:
In Windows: C:\> set CLASSPATH=
In Unix: % unset CLASSPATH; export CLASSPATH
To set the CLASSPATH variable, use these commands (for example):
In Windows: C:\> set CLASSPATH=C:\users\george\java\classes
In Unix: % CLASSPATH=/home/george/java/classes; export
CLASSPATH

__

Obviously, you can write your own classes that contain constants and
static methods that you use frequently, and then use the static import
statement. For example,

import static mypackage.MyConstants.*;

Note: Use static import very sparingly. Overusing static import can
result in code that is difficult to read and maintain, because readers
of the code won't know which class defines a particular static object.
Used properly, static import makes code more readable by removing
class name repetition.

Managing Source and Class Files

Many implementations of the Java platform rely on hierarchical file
systems to manage source and class files, although The Java
Language Specification does not require this. The strategy is as
follows. Put the source code for a class, interface, enumeration, or
annotation type in a text file whose name is the simple name of the
type and whose extension is .java. For example:

// in the Rectangle.java file
package graphics;
public class Rectangle() {
 . . .
}

Then, put the source file in a directory whose name reflects the name
of the package to which the type belongs:

.....\graphics\Rectangle.java

The qualified name of the package member and the path name to the
file are parallel, assuming the Microsoft Windows file name
separator backslash (for Unix, use the forward slash).

class name graphics.Rectangle

pathname to file graphics\Rectangle.java

As you should recall, by convention a company uses its reversed
Internet domain name for its package names. The Example company,
whose Internet domain name is example.com, would precede all its
package names with com.example. Each component of the package
name corresponds to a subdirectory. So, if the Example company had
a com.example.graphics package that contained a Rectangle.java
source file, it would be contained in a series of subdirectories like
this:

....\com\example\graphics\Rectangle.java

When you compile a source file, the compiler creates a different
output file for each type defined in it. The base name of the output
file is the name of the type, and its extension is .class. For example,
if the source file is like this

